The protocol describes a method for introducing controllable genetic diversity in the hepatitis C virus genome by combining full-length mutant RNA synthesis using error-prone PCR and reverse genetics. The method provides a model for phenotype selection and can be used for 10 kb long positive-sense RNA virus genomes.
The lack of a convenient method for the iterative generation of diverse full-length viral variants has impeded the study of directed evolution in RNA viruses. By integrating a full RNA genome error-prone PCR and reverse genetics, random genome-wide substitution mutagenesis can be induced. We have developed a method using this technique to synthesize diverse libraries to identify viral mutants with phenotypes of interest. This method, called full-length mutant RNA synthesis (FL-MRS), offers the following advantages: (i) the ability to create a large library via a highly efficient one-step error-prone PCR; (ii) the ability to create groups of libraries with varying levels of genetic diversity by manipulating the fidelity of DNA polymerase; (iii) the creation of a full-length PCR product that can directly serve as a template for mutant RNA synthesis; and (iv) the ability to create RNA that can be delivered into host cells as a non-selected input pool to screen for viral mutants of the desired phenotype. We have found, using a reverse genetics approach, that FL-MRS is a reliable tool to study viral-directed evolution at all stages in the life cycle of the hepatitis C virus, JFH1 isolate. This technique appears to be an invaluable tool to employ directed evolution to understand adaptation, replication, and the role of viral genes in pathogenesis and antiviral resistance in positive-sense RNA viruses.
Forward genetic screening begins with a viral phenotype of interest and then, through sequencing its genome and comparing it to that of the original strain, attempts to identify the mutation(s) causing that phenotype. In contrast, in reverse genetic screens, random mutations are introduced in a target gene, followed by an examination of the resultant phenotype(s)1. For the reverse genetics approach, in vitro mutagenesis is the most widely used technique to create a pool of variants that are subsequently screened for phenotypes of interest. Various genetic tools have been reported for achieving genome-wide random mutagenesis of RNA viruses, including error-prone PCR (ep-PCR)2,3, circular polymerase extension4, and Mu-transposon insertion mutagenesis 5,6,7. The latter two methods yield libraries harboring limited sequence diversity and are prone to the introduction of large insertions and deletions, which are highly lethal for viruses and severely limit the recovery of infectious viral variants.
ep-PCR is a well-known powerful mutagenesis technique widely used in protein engineering to generate mutant enzymes for the selection of phenotypes with desired properties, such as enhanced thermal stability, substrate specificity, and catalytic activity8,9,10. This technique is easy to perform because it requires simple equipment, does not involve tedious manipulations, uses commercially available reagents, and is quick; moreover, it generates high-quality libraries.
Here, we developed a novel method for full-length mutant RNA synthesis (FL-MRS) to generate complete genomes of hepatitis C virus (HCV) by integrating ep-PCR, which induces random genome-wide substitution mutagenesis and reverse genetics. Even a single nucleotide insertion or deletion is highly deleterious for positive-sense RNA viruses ([+]ssRNA); hence, PCR-based substitution mutagenesis is the preferred method for the iterative generation of large, diverse libraries of full (+)ss RNA virus genomes with good viability.
FL-MRS is a straightforward approach that can be applied to any positive-sense RNA virus with a ~10 kb genome length through the meticulous design of a primer set that binds to the viral cDNA clone. pJFH1 is an infectious cDNA clone that encodes the HCV genotype 2a and can recapitulate all steps of the virus life cycle. By using the FL-MRS approach, we demonstrated the synthesis of randomly mutagenized full-genome libraries (mutant libraries [MLs]) to produce replication-competent JFH1 variants for which there was no prior knowledge of the properties associated with mutations. Upon exposure to an antiviral, some of the viral variants quickly overcame the drug pressure with the desired phenotypic change. Using the protocol described here, a plethora of viral variants can be generated, creating opportunities to study the evolution of (+)ssRNA viruses.
NOTE: The JFH1 strain (WT) used here was a kind gift from Takaji Wakita, National Institute of Infectious Diseases. The human hepatoma cell line, Huh7.5, was a kind gift from Charles Rice, The Rockefeller University. A schematic of the method is shown in Figure 1.
1. Genome-wide substitution mutagenesis of JFH1 using error-prone PCR
2. Viral RNA synthesis
3. Estimation of the proportion of mutations in ep-PCR products (mutant libraries)
NOTE: In this step, the proportion of nucleotides mutated by subcloning the product obtained in step 2. was estimated to demonstrate the advantage of employing ep-PCR to create genetic heterogeneity using two full genome mutant libraries (ML50 and ML25) and clonal pJFH1-derived viral RNAs. The proportion of mutations was estimated in the HCV NS5A gene, which was also the phenotypic readout gene (drug resistance) in this study.
4. Viral RNA transfection of the Huh7.5 cell line
NOTE: Use RNase/DNase-free tissue culture materials and work in a sterile class II biosafety cabinet. Work in the recommended containment facility as per the biosafety guidelines of the organization.
5. Virus production
6. Quantification of virus titers
7. Drug-resistant viral variant selection
A plethora of full-length HCV variants can be generated and screened for drug-resistant phenotypes of interest following the procedures described in Figure 1. Full genome mutant libraries were synthesized using clonal-pJFH1 in decreasing amounts (100-10 ng), as shown in Figure 2. Average yields of ep-PCR products (mutant libraries) ranged from 3.8-12.5 ng/µL. Figure 3 shows the viral transcripts synthesized from the clonal-pJFH1 and the representative mutant library (ML50 synthesized using 50 ng of clonal-pJFH1). The clonal-pJFH1 was linearized via XbaI digestion, while ML50 was used directly in the in vitro transcription reaction. The proportion of mutations in mutant libraries (mutant viral RNAs) increased with decreasing input pJFH1 in the ep-PCR reaction, as shown in Figure 4. ML50 synthesized using 50 ng of the template (clonal-pJFH1) had 4 substitutions per 10,000 bp copied, whereas ML25 synthesized using 25 ng of template harbored 9 substitutions.No substitutions within the number of nucleotides sequenced were found in clonal-pJFH1. ML50 viral variants were less susceptible (12.7-fold) to pibrentasvir, an NS5A inhibitor, compared to clonal-JFH1 virus, as shown in Figure 5. Table 5 has NS5A substitutions identified in ML50 viral variants selected against 1x EC50 of pibrentasvir treatment. Of the eight NS5A clones, four had a combination of D7V+F28C, whereas V8A+F28C and F36L occurred in one clone each. These mutations were at the N-terminus region of NS5A, which is known to harbor clinically relevant NS5A-resistance mutations17.
Figure 1: Schematic of the FL-MRS strategy and drug-resistant phenotype selection. (A) The pJFH1 cDNA (wild-type) clone carries a full-length genotype 2a virus genome and T7 promoter. The primer J-For is upstream of the T7 promoter, and the primer J-Rev is located at the 3' end of the HCV genome. (B) Clonal-pJFH1 is randomly mutagenized using error-prone PCR to engineer genetic variations and to create full genome mutant libraries. Clonal-pJFH1 is linearized by XbaI digestion. (C) Full-genome ep-PCR products and linearized clonal-pJFH1 are the templates for in vitro transcription. The proportion of mutations in the viral RNAs of MLs and clonal-JFH1 was determined by TA subcloning of NS5A and Sanger sequencing of positive TA clones. (D) Replication-competent variants generated after mutant viral RNA transfection of Huh7.5 cells were treated with pibrentasvir (an NS5A inhibitor) for the selection of NS5A-resistant phenotypes. Please click here to view a larger version of this figure.
Figure 2: Agarose gel electrophoresis of ep-PCR products. HCV full-genome ep-PCR products synthesized using varying template amounts (100 ng, 50 ng, 25 ng, and 10 ng of pJFH1) were separated using 0.8% TAE agarose gel electrophoresis. The expected size of the ep-PCR product is 9.7 kb. The separated products were visualized by ethidium bromide staining. Lane 1 is a 1 kb DNA ladder; Lane 6 is no-template control (labeled as H2O). Please click here to view a larger version of this figure.
Figure 3: MOPS formaldehyde agarose gel electrophoresis of viral transcripts. Linearized pJFH1 (Lane 2) and the mutant library obtained with 50 ng (ML50) of pJFH1 containing ep-PCR (Lane 3) were used as templates for the in vitro transcription reaction. The integrity of the transcripts was analyzed using a MOPS formaldehyde 0.8% agarose gel stained with ethidium bromide. Lane 1 is a 1 kb RNA ladder. Please click here to view a larger version of this figure.
Figure 4: Proportion of substitutions in mutant libraries. NS5A genes from RNAs of clonal-pJFH1, ML50, and ML25 were amplified in high-fidelity PCRs, followed by the addition of 3' A overhang, ligation of the product with T-vector, and transformation of E. coli DH5α with the ligated product. Around 40,000 nucleotides/library or clonal-pJFH1 were Sanger sequenced. An average proportion of mutations per 10,000 bp copied is shown. Please click here to view a larger version of this figure.
Figure 5: Estimation of EC50 of pibrentasvir against ML50 variants. Huh7.5 cells were infected with clonal-JFH1 virus or ML50 variants and treated with serial two-fold dilutions starting at 100 pM of pibrentasvir, followed by FFA after 3 days. Sigmoidal dose-response curves using FFU-reduction assay values were plotted in statistical analysis software to estimate the 50% effective concentration. Please click here to view a larger version of this figure.
Components for 50 µL | Required stock value | Final concentration/reaction |
10x PCR buffer | 5.0 µL | 1x |
MgCl2 (50 mM) | 1.5 µL | 1.5 mM |
KB Extender | 2.0 µL | – |
dNTPs (10 mM) | 1.0 µL | 0.2 mM |
Forward primer (10 µM) | 1.0 µL | 0.2 µM |
Reverse primer (10 µM) | 1.0 µL | 0.2 µM |
Taq DNA Polymerase (10 U/µL) | 0.5 µL (1:4 diluted) | 1 U |
Template (pJFH1, 20 ng/µL) | 0.5 to 5.0 µL | 10 to 100 ng |
Water | 32.5 to 37.5 µL | Adjust for final volume of 50 µL |
Table 1. Ep-PCR components for the amplification of HCV full genome.
Temperature | Time | Cycle(s) |
95 °C | 3 min | 1 |
95 °C | 30 Sec | 30 |
60 °C | 25 Sec | |
72 °C | 8 min | |
72 °C | 10 min | 1 |
4 °C | Hold |
Table 2. Cycling conditions for the ep-PCR of HCV full genome.
Assay | Primer | Sequence (5’-3’) |
Amplification of partial NS4B-NS5A-partial NS5B | 5272F | TGGCCCAAAGTGGAACAATTTTGG |
7848R | GGCCATTTTCTCGCAGACCCGGAC | |
cDNA synthesis | 9464R | GTGTACCTAGTGTGTGCCGCTCTA |
qRT-PCR | R9-148-S21FT (TaqMan probe) | CTGCGGAACCGGTGAGTACAC |
R6-130-S17 | CGGGAGAGCCATAGTGG | |
R6-290-R19 | AGTACCACAAGGCCTTTCG | |
Sequencing primers to determine proportions of mutations in ep-PCR products | 6208-SPF | CCCAACTACTTGGCTCTCTTAC |
6748-SPF | GACGGTGTGCAGATCCATAG | |
NS5A gene sequencing (and to determine proportions of mutations in ep-PCR products) | 6186F | CAACGCAGAACGAGACCTCATCCC |
6862F | GACCTTTCCTATCAATTGCTACAC | |
6460R | TGGGCACGGCCTGACTACAA |
Table 3. Primers and sequences used in assays.
Temperature | Time | Cycle(s) |
95 °C | 4 min | 1 |
95 °C | 30 Sec | 5 |
68 °C | 30 Sec | |
72 °C | 2 min | |
95 °C | 30 Sec | 5 |
66 °C | 30 Sec | |
72 °C | 2 min | |
95 °C | 30 Sec | 5 |
64 °C | 30 Sec | |
72 °C | 2 min | |
95 °C | 30 Sec | 5 |
62 °C | 30 Sec | |
72 °C | 2 min | |
95 °C | 30 Sec | 10 |
60 °C | 30 Sec | |
72 °C | 2 min | |
72 °C | 10 min | 1 |
4 °C | Hold |
Table 4. Cycling conditions for NS5A amplification.
Substitution(s) | No. of clones (n=6) |
D7V+F28C | 4 |
V8A+F28C | 1 |
F36L | 1 |
Table 5. Pibrentasvir-resistance substitutions of NS5A.
In this study, we have detailed a simple and rapid FL-MRS procedure that integrates ep-PCR18 and reverse genetics for synthesizing HCV full-genome libraries, which can then be used in a cell culture system to generate replication-competent variants for the screening of drug-resistant phenotypes. The use of low-fidelity Taq DNA polymerase is a prerequisite of ep-PCR that allows the incorporation of substitutions during PCR amplification of a full-length viral genome. We tested several low-fidelity Taq DNA polymerases and found that Platinum Taq DNA polymerase yielded a ~10 kb sized ep-PCR product with a high yield (data not shown). We recommend using a fixed number of thermal cycles and varying the input template amount to control the proportion of mutations in the full-genome libraries. Since FL-MRS utilizes erroneous full genomes as templates for full-length viral RNAs, a careful design of the primer set is critical to ensure that the RNA synthesis reaction produces virus transcripts of defined length: (i) the forward primer must be located upstream (~50 nucleotides) of the T7 promoter of the cDNA clone to facilitate T7 polymerase binding to the ep-PCR product; and (ii) the reverse primer sequence must end at the 3' end of the virus genome to facilitate transcription runoff during in vitro RNA synthesis.
However, the method is relatively crude, and there is no control over incorporating the required number and type of substitutions at regions of interest in the genome. A major advantage of FL-MRS is that the synthesized full-length transcripts can be directly used to transfect cells, which renders the approach simple and efficient for generating a large pool of viral variants. In contrast, circular polymerase extension and Mu-transposon insertion mutagenesis methods require cloning of the PCR product and screening of transformants prior to selection of the desired phenotype, which severely limits the diversity of the pool of mutants. Although our method greatly increases the chance of yielding several desired phenotypes, the evaluation of individual viral variants is normally required in screening.
Integration of ep-PCR with virus reverse genetics allowed us to quickly generate HCV mutants. This method has the potential to generate hundreds of genetically modified viruses, a feat seemingly not possible with the currently available in vitro mutagenesis techniques. The method detailed here is readily adaptable to cDNA clones carrying any (+)ssRNA viruses containing genomes up to ~10 kb in length.
The authors have nothing to disclose.
Funding support (grant number BT/PR10906/MED/29/860/2014) for this study was provided by the Department of Biotechnology, Government of India.
1 kb plus DNA ladder | Thermo Fisher | 10787018 | |
1.5 ml centrifuge tube | Tarsons | 500010 | |
15 ml centrifuge tube | Tarsons | 546021 | |
35 mm cell culture dish | Tarsons | 960010 | |
50 ml centrifuge tube | Tarsons | 546041 | |
Acetic acid | Merck | A6283 | |
Agarose | HiMedia | MB080 | |
Agrose gel electrophoresis unit | BioRad | 1704406 | |
Biosafety Cabinet, ClassII | ESCO | AC2 4S | |
Bovine serum albumin | HiMedia | MB083 | |
Centrifuge | Eppendorf | 5424-R | |
CFX Connect Real-Time PCR Detection System | BioRad | 1855201 | |
Cloning plates 90 mm | Tarson | 460091 | |
CO2 Incubator | New Brunswick | Galaxy 170R | |
Colibri Microvolume Spectrometer | Titertek-Berthold | 11050140 | |
DAB Substrate Kit | Abcam | ab94665 | |
dATP Solution | NEB | N0440S | |
Deoxynucleotide (dNTP) Solution Set | NEB | N0446 | |
Diethyl Pyrocarbonate (DEPC) | SRL chemical | 46791 | |
Dimethyl sulphoxide (DMSO) | HiMedia | MB058 | |
DMEM high glucose | Lonza | BE12-604F | |
EcoR1-HF | NEB | R3101 | |
EDTA tetrasodium salt dihydrate | HiMedia | GRM4918 | |
Ethidium Bromide | Amresco | X328 | |
Fetal bovine serum | Gibco | 26140079 | |
Formaldehyde | Fishser Scientific | 12755 | |
Gel Documentation System | ALPHA IMAGER | ||
Goat anti-Mouse IgG (H+L) Secondary Antibody, HRP | Thermo Fisher | A16066 | |
Hydrogen peroxide 30% | Merck | 107209 | |
Inverted microscope | Nickon | ECLIPSE Ts2 | |
LB broth | HiMedia | M1245 | |
Lipofectamine 2000 | Thermo Fisher | 116680270 | transfection reagent |
Mechanical Pipette Set | Eppendorf | 3120000909 | |
Methanol | Merck | 106009 | |
Micro Tips 0.2-10 µl | Tarsons | 521000 | |
Micro Tips 10 – 100 µl | Tarsons | 521010 | |
Micro Tips 200-1000 µl | Tarsons | 521020 | |
MOPS buffer | GeNei | 3601805001730 | |
Nonessential aminoacids (NEAA) | Gibco | 11140050 | |
One Shot TOP10 Chemically Competent E. coli | Invitrogen | C404010 | E.coli DH5α |
Opti-MEM | Gibco | 1105-021 | minimal essential medium |
PCR tubes 0.2 ml | Tarsons | 510051 | |
Pencillin/streptomycin | Gibco | 15070063 | |
pGEM-T Easy Vector System | Promega | A1360 | T-vector DNA |
Phosphate buffer saline (PBS) | HiMedia | TI1099 | |
Phusion High-Fidelity DNA Polymerase | NEB | M0530S | |
Pibrentasvir | Cayman Chemical | 27546 | |
Pipette controller | Gilson | F110120 | |
Platinum Taq DNA Polymerase | Thermo | 10966034 | |
Prism | GraphPad | statistical analysis software | |
QIAamp Viral RNA Mini kit | Qiagen | 52904 | viral isolation kit |
QIAprep Spin Miniprep Kit | Qiagen | 27106 | |
QIAquick PCR Purification Kit | QIAGEN | 28104 | cokum purification kit |
RNeasy Mini Kit | QIAGEN | 74104 | RNA cleanup kit |
Serological Pipettes 25 ml | Thermo Fisher | 170357N | |
Serological Pipettes 5 ml | Thermo Fisher | 170355N | |
Serological Pipettes10 ml | Thermo Fisher | 170356N | |
Single strand RNA Marker 0.2-10 kb | Merck | R7020 | |
Skim milk | HiMedia | M530 | |
Sodium azide 0.1 M solution | Merck | 8591 | |
SuperScript III Reverse Transcriptase | Invitrogen | 18080044 | reverse transcriptase |
T100 Thermal Cycler | BioRad | 1861096 | |
T175 cell culture flask | Tarsons | 159910 | |
T25 cell culture flask | Tarsons | 950040 | |
T7 RiboMax Express Large Scale RNA Production System | Promega | P1320 | Large Scale RNA Production System |
T75 cell culture flask | Tarsons | 950050 | |
Taq DNA Polymerase | Genetix Biotech (Puregene) | PGM040 | |
TaqMan RNA-to-CT 1-Step Kit | Applied Biosystems | 4392653 | |
TaqMan RNA-to-CT 1-Step Kit | Thermo Fisher | 4392653 | commercial qRT-PCR kit |
TOPO-XL–2 Complete PCR Cloning Kit | Thermo Fisher | K8050-10 | kit for cloning of long-PCR product |
Tris base | HiMedia | TC072 | |
Trypsin-EDTA solution | HiMedia | TCL007 | |
Tween 20 | HiMedia | MB067 | |
Vacuum Concentrator | Eppendorf, Concentrator Plus | 100248 | |
Water bath | GRANT | JBN-18 | |
Xba1 | NEB | R0145S |