Summary

耦合剂在提高聚合物纳米复合物介电性能方面的应用

Published: September 19, 2020
doi:

Summary

在这里,我们演示了一种简单、低成本的解决方案铸造工艺,利用表面改性BaTiO3 填料,提高聚合物纳米复合材料的填料和基质的兼容性,从而有效提高复合材料的能量密度。

Abstract

在这项工作中,通过通过溶液铸造将3-氨基丙基三氧硅烷(KH550)作为耦合剂,开发出一种简单、低成本、广泛应用的方法,以提高陶瓷填料与聚合物基质的相容性。3结果表明,使用KH550可以修改陶瓷纳米填埋器的表面;因此,在陶瓷聚合物界面上取得了良好的的可加工性,并通过适当数量的耦合剂获得了增强的储能性能。该方法可用于准备柔性复合材料,这是生产高性能薄膜电容器非常理想的方法。如果过程中使用过量的耦合剂,则非附加耦合剂可参与复杂反应,导致介电常数降低,介电损耗增加。

Introduction

电介质在电能存储装置中主要采用两个重要参数:电介质常数(+r)和分解强度(Ebb)1、2、3。1,2,3一般来说,有机材料,如聚丙烯 (PP) 表现出高 Eb (±102 MV/m) 和低 μr (主要是 <5)456,而无机材料, 特别是铁电,如BaTiO3,表现出高\r(10 3-104)和低E b(+10 0 MV/m)6,7,8。6,7,8,在某些应用中,灵活性和承受高机械冲击的能力对于制造介电电容器4也很重要。因此,开发制备聚合物基介电复合材料的方法非常重要,特别是对于开发低成本方法,以制造高性能0-3纳米复合材料,具有高\r和E b9、10、11、12、13、14、15、16、17、18。9,10,11,12,13,14,15,16,17,18为此,基于铁电聚合物基质(如极量聚合物PVDF及其相关共聚合物)的制备方法由于其较高的+r (+10)4、19、20,4,19,被广泛接受。在这些纳米合成物中,高e r的粒子,特别是铁电陶瓷,已被广泛用作填料6,20,21,22,23,24,25。20,21,22,23,24,256

在开发制造陶瓷聚合物复合材料的方法时,人们普遍担心介电特性会受到填料26的分布显著影响。介电复合材料的均匀性不仅取决于制备方法,还取决于基质和填料之间的可湿。许多研究已经证明,陶瓷聚合物复合材料的不均匀性可以通过物理过程,如自旋涂层28,29,和热压19,26,,可以消除29但是,这两个过程都不会改变填料和矩阵之间的表面连接;因此,这些方法所准备的复合材料在改进\rEb19,27方面仍然有限。此外,从制造的角度来看,不方便的工艺是许多应用不可取的,因为它们会导致更复杂的制造过程28,29。28,在这方面,需要一种简单和有效的方法。

目前,提高陶瓷聚合物纳米合成物相容性最有效的方法是基于陶瓷纳米粒子的处理,它修改了填料和表层30、31之间的表面化学。最近的研究表明,耦合剂可以很容易地涂在陶瓷纳米颗粒上,并有效地修改填料和矩阵之间的可处理性,而不影响铸造工艺32,33,34,35,36。32,33,34,35,36在表面改性方面,人们普遍认为,对于每个复合材料系统,都有合适的耦合剂,相当于能量储存密度的最大增加37;复合材料中过量耦合,剂可能导致产品36、37、38,37的性能下降。对于采用纳米尺寸陶瓷填料的介电复合材料,推测耦合剂的有效性主要取决于填料的表面面积。然而,每个纳米大小的系统使用的关键量尚未确定。简言之,还需要进一步研究使用耦合剂开发制造陶瓷聚合物纳米复合体的简单工艺。

在这项工作中,BaTiO3 (BT)是研究最广泛的高介电常数的铁电材料,用作填料,P(VDF-CTFE) 91/9 mol% 共聚合物 (VC91) 用作制备陶瓷聚合物复合材料的聚合物基质。为了改变BT纳米填埋器的表面,购买了市售的3-氨基三乙基硅烷(KH550),并用作耦合剂。通过一系列实验确定了纳米合成系统临界量。一种简单、低成本、广泛应用的方法,提高了纳米级复合材料系统的能量密度。

Protocol

1. BT 填料的表面修改 准备 20 mL 的 KH550 溶液(95 wt% 乙醇水溶剂中的 1 wt% KH550)和超声波酸酯 15 分钟。 分别称重 BT 纳米颗粒(即填料)和 KH550,使填料可以涂上 1、2、3、4、5wt% 的耦合剂。通过 30 分钟超声波化,在 1.057、2.114、3.171、4.228 和 5.285 mL 的 KH550 溶液中处理 1 gBT 纳米颗粒。 在80°C下从混合物中蒸发水乙醇溶剂5小时,然后在120°C下在真空烤箱中蒸发12小时。 ?…

Representative Results

与填料内容不同的自立纳米复合材料薄膜按协议描述成功制造,并标记为 xBT-VC91,其中 x 是复合材料中 BT 的体积百分比。SEM研究了KH550(耦合剂)对BT-VC91薄膜形态和微观结构的影响,如图 1所示。图 1a 和图1b显示了30BT-VC91纳米相微的SEM图像,具有1和5wt% 耦合剂。BT-VC91 纳米相合成物的填料分布为 1 wt% KH550,其密度比 BT-VC91 纳米相?…

Discussion

如上文所述,本所开发的方法可以成功地提高陶瓷聚合物纳米复合物的储能性能。为了优化该方法的效果,控制陶瓷表面改性中使用的耦合剂量至关重要。对于直径为±200nm的陶瓷纳米粒子,经实验确定,2 wt%的KH550可产生最大能量密度。对于其他复合材料系统,当采用直径接近 ±200 nm 的填料时,可以大致使用此结论。如果使用直径大于 200 nm 的填料,则应通过类似的一系列实验再次确定临界量。</…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作由太原科技大学科研初始资助(20182028)、山西省博士创业基金会(20192006)、山西省自然科学基金(201703D1111003)、山西省科技重大项目(MC2016-01)和中国国家自然科学基金支持U610256项目支持。

Materials

3-Aminopropyltriethoxysilane (KH550) Sigma-Aldrich 440140 Liquid, Assay: 99%
95 wt.% ethanol-water Sigma-Aldrich 459836 Liquid, Assay: 99.5%
BaTiO3 nanoparticles US Research Nanomaterials US3830 In a diameter of about 200 nm
Ferroelectric tester Radiant Precision-LC100
Glass substrates Citoglas 16397 75 x 25 mm
Gold coater Pelco SC-6
High voltage supplier Trek 610D 10 kV
Impedance analyzer Keysight 4294A
N, N dimethylformamide Fisher Scientific GEN002007 Liquid
P(VDF-CTFE) 91/9 mol.% copolymer
Scanning Electron Microscopy (SEM) JEOL JSM-7000F
Vacuum oven Heefei Kejing Materials Technology Co, Ltd DZF-6020

References

  1. Lines, M. E., Glass, A. M. . Principles and applications of ferroelectrics and related materials. , (2001).
  2. Nalwa, H. S. . Handbook of low and high dielectric permittivity materials and their applications, phenomena, properties and applications. , (1999).
  3. Kao, K. C. . Dielectric phenomena in solids. , (2004).
  4. Tong, Y., Li, L., Liu, J., Zhang, K., Jiang, Y. Influence of coupling agent on the microstructure and dielectric properties of free-standing ceramic-polymer composites. Materials Research Express. 6 (9), 095322 (2019).
  5. Zhang, M., et al. Controlled functionalization of poly(4-methyl-1-pentene) films for high energy storage applications. Journal of Materials Chemistry A. 4 (13), 4797-4807 (2016).
  6. Zhang, L., Cheng, Z. Y. Development of polymer-based 0-3 composites with high dielectric constant. Journal of Advanced Dielectrics. 1 (04), 389-406 (2011).
  7. Barsoum, M., Barsoum, M. W. . Fundamentals of ceramics. , (2002).
  8. Jaffe, B. . Piezoelectric ceramics. , (2012).
  9. Zhang, L., et al. All-organic dielectric nanocomposites using conducting polypyrrole nanoclips as filler. Composites Science Technology. 167, 285-293 (2018).
  10. Liao, X., et al. Flexible hdC-G reinforced polyimide composites with high dielectric permittivity. Composites Part A: Applied Science and Manufacturing. 101, 50-58 (2017).
  11. Xu, W., et al. Highly foldable PANi@ CNTs/PU dielectric composites toward thin-film capacitor application. Materials Letters. 192, 25-28 (2017).
  12. Zhang, L., et al. Nano-clip based composites with a low percolation threshold and high dielectric constant. Nano Energy. 26, 550-557 (2016).
  13. Zhou, S., Zhou, G., Jiang, S., Fan, P., Hou, H. Flexible and refractory tantalum carbide-carbon electrospun nanofibers with high modulus and electric conductivity. Materials Letters. 200, 97-100 (2017).
  14. Zhang, L., Du, W., Nautiyal, A., Liu, Z., Zhang, X. Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Science China Materials. 61 (3), 303-352 (2018).
  15. Xie, Y., Yu, Y., Feng, Y., Jiang, W., Zhang, Z. Fabrication of Stretchable Nanocomposites with High Energy Density and Low Loss from Cross-Linked PVDF Filled with Poly(dopamine) Encapsulated BaTiO3. ACS Applied Materials & Interfaces. 9 (3), 2995-3005 (2017).
  16. Zhang, L., Wu, P., Li, Y., Cheng, Z. Y., Brewer, J. C. Preparation process and dielectric properties of Ba0.5Sr0.5TiO3-P(VDF-CTFE) nanocomposites. Composite Part B: Engineering. 56, 284-289 (2014).
  17. Dang, Z. M., et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Progress in Materials Science. 57 (4), 660-723 (2012).
  18. Wu, P., et al. Effect of coupling agents on the dielectric properties and energy storage of Ba0.5Sr0.5TiO3/P(VDF-CTFE) nanocomposites. AIP Advances. 7 (7), 075210 (2017).
  19. Zhang, L., et al. Process and microstructure to achieve ultra-high dielectric constant in ceramic-polymer composites. Scientific Reports. 6, 35763 (2016).
  20. Lu, X., Tong, Y., Cheng, Z. Y. Fabrication and characterization of free-standing, flexible and translucent BaTiO3-P (VDF-CTFE) nanocomposite films. Journal of Alloys and Compounds. 770, 327-334 (2019).
  21. Goyal, R. K., Katkade, S. S., Mule, D. M. Dielectric, mechanical and thermal properties of polymer/BaTiO3 composites for embedded capacitor. Composites Part B: Engineering. 44 (1), 128-132 (2013).
  22. Pan, Z., et al. Fast discharge and highenergy density of nanocomposite capacitors using Ba0.6Sr0.4TiO3nanofibers. Ceramics International. 42 (13), 14667-14674 (2016).
  23. Hu, G., et al. Preparation and dielectric properties of poly(vinylidene fluoride)/Ba0.6Sr0.4TiO3 composites. Journal of Alloys and Compounds. 619, 686-692 (2015).
  24. Chen, Y., Chan, H. L. W., Choy, C. L. Nanocrystalline lead titanate and lead titanate/vinylidene fluoride-trifluoroethylene 0-3 nanocomposites. Journal of the American Ceramic Society. 81 (5), 1231-1236 (1998).
  25. Singh, P., Borkar, H., Singh, B. P., Singh, V. N., Kumar, A. Ferroelectric polymer-ceramic composite thick films for energy storage applications. AIP advances. 4 (8), 087117 (2014).
  26. Dang, Z., et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Progress in Materials Science. 57 (4), 660-723 (2012).
  27. Arbatti, M., Shan, X. B., Cheng, Z. Y. Ceramic-Polymer Composites with High Dielectric Constant. Advanced Materials. 19 (10), 1369-1372 (2007).
  28. Fan, B., Liu, Y., He, D., Bai, J. Achieving polydimethylsiloxane/carbon nanotube (PDMS/CNT) composites with extremely low dielectric loss and adjustable dielectric constant by sandwich structure. Applied Physics Letters. 112 (5), 052902 (2018).
  29. Liao, S., et al. A surface-modified TiO2 nanorod array/P(VDF-HFP) dielectric capacitor with ultra-high energy density and efficiency. Journal of Materials Chemistry C. 5 (48), 12777-12784 (2017).
  30. Mittal, K. L. . Silanes and Other Coupling Agents. 3, (2004).
  31. Zhang, X., et al. Superior Energy Storage Performances of Polymer Nanocomposites via Modification of Filler/Polymer Interfaces. Advanced Materials Interfaces. 5 (11), 1800096 (2018).
  32. Yeh, J. M., et al. Thermal and optical properties of PMMA-titania hybrid materials prepared by sol-gel approach with HEMA as coupling agent. Journal of Applied Polymer Science. 94 (1), 400-405 (2004).
  33. Yang, C., Song, H. S., Liu, D. B. Effect of coupling agents on the dielectric properties of CaCu3Ti4O12/PVDF composites. Composites Part B: Engineering. 50, 180-186 (2013).
  34. Iijima, M., Sato, N., Lenggoro, I. W., Kamiya, H. Surface Modification of BaTiO3 Particles by Silane Coupling Agents in Different Solvents and Their Effect on Dielectric Properties of BaTiO3/Epoxy Composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 352 (1-3), 88-93 (2009).
  35. Zhang, Q., et al. Enhanced Dielectric Tunability of Ba0.6Sr0.4TiO3/Poly(vinylidene fluoride) Composites via Interface Modification by Silane Coupling. Agent. Composites Science and Technology. 129, 93-100 (2016).
  36. Dang, Z. M., Wang, H. Y., Xu, H. P. Influence of Silane Coupling Agent on Morphology and Dielectric Property in BaTiO3/Polyvinylidene fluoride Composites. Applied Physics Letters. 89 (11), 112902 (2006).
  37. Tong, Y., Zhang, L., Bass, P., Rolin, T. D., Cheng, Z. Y. Influence of silane coupling agent on microstructure and properties of CCTO-P(VDF-CTFE) composites. Journal of Advanced Dielectrics. 8 (02), 1850008 (2018).
  38. Shan, X. . High dielectric constant 0-3 ceramic-polymer composites. , (2009).

Play Video

Cite This Article
Li, H., Zhang, D., Li, Z., Li, L., Liu, J., Li, Y. Application of a Coupling Agent to Improve the Dielectric Properties of Polymer-Based Nanocomposites. J. Vis. Exp. (163), e60916, doi:10.3791/60916 (2020).

View Video