Summary

13与LC-MS相关的C6-葡萄糖标记:次生代谢物合成中植物初级器官的鉴定

Published: March 22, 2024
doi:

Summary

所建立的 13C6-葡萄糖标记结合液相色谱-高分辨质谱联用方法具有通用性,为今后药用植物合成次生代谢产物的主要器官和途径以及这些次生代谢产物的综合利用奠定了基础。

Abstract

本文提出了一种新颖有效的方法,用于认证参与次级代谢产物合成的初级器官。作为巴黎最重要的次生代谢产物Polyphylla var. yunnanensis (Franch.)手。-Mzt.(PPY),巴黎皂苷(PS)具有多种药理活性,PPY的需求量越来越大。本研究建立了叶、根茎和茎-维束 13C6-葡萄糖摄食和非摄食 4 个处理,以精确证明参与巴黎皂苷 VII (PS VII) 合成的主要器官。采用液相色谱-质谱联用(LC-MS)相结合,快速准确地计算了不同处理下叶片、根茎、根的13C/12C比值,得到(M+1) /M、(M+2) /M−、(M+3) /M和(M+4) −/M−4 /M4种比值。结果表明:茎-维束-根茎取食处理和根茎取食处理中13C/12C的比值显著高于非取食处理。与非摄食处理相比,叶片和茎-维管束摄食处理下叶片中PS VII分子比值(M+2) /M显著增加。同时,与非摄食处理相比,根茎处理下叶片中PS VII分子比值(M+2)/M差异无统计学意义。此外,4个处理间茎、根和根茎中PS VII分子的比例(M+2)/M无差异。与非饲喂处理相比,叶饲处理下叶片中Paris saponin II(PS II)分子比值(M+2) /M差异无统计学意义,叶饲处理下叶片中PS II分子比值(M+3) /M较低。数据证实,合成PS VII的主要器官是叶子。为今后鉴定药用植物中参与合成次生代谢物的主要器官和途径奠定了基础。

Introduction

植物次生代谢产物的生物合成途径错综复杂且多样化,涉及高度特异性和多样化的积累器官1。目前,许多药用植物中次生代谢产物的具体合成位点和负责器官尚不明确。这种模糊性对旨在优化药材产量和质量的栽培方法的战略推进和实施构成了重大障碍。

分子生物学、生化和同位素标记技术被广泛用于揭示药用植物中次生代谢物的合成途径和位点 2,3,4,5,这些方法中的每一种都表现出独特的优势和局限性,例如效率和准确性的差异。例如,分子生物学方法在精确定位生物合成途径中的位点方面提供了高精度,但非常耗时。对于缺乏公开基因组序列的物种来说,它们的实用性进一步受到限制,使得这些技术在此类情况下的可行性降低6.相比之下,采用同位素比(如 3C/12C、2H/1H 和 18O/16O)的同位素标记技术为研究次级代谢物的合成、运输和储存机制提供了一种快速且易于获取的方法 7,8它们可以揭示叶片中有机化合物和稳定同位素的空间分布,从而可以重建叶片在其整个生命周期中所经历的环境条件9。此外,应用外部同位素标记,如 13C6-葡萄糖1013C6-苯丙氨酸11,可以产生碳标记的次级代谢物,增强我们对它们产生和功能的理解。

由于传统的碳同位素标记技术的生物合成途径和转运机制具有高度的物种特异性,因此在确定负责合成次级代谢物的特定器官方面遇到了挑战。液相色谱-质谱 (LC-MS) 作为该领域的关键分析仪器已日益受到重视,它为追踪药物化学合成中的外源同位素和研究吸收、分布、代谢和排泄等体内过程提供了一种可靠的方法12。LC-MS 具有卓越的灵敏度、简单性和可靠性,是监测植物中次级代谢物产生的理想选择13.近年来,LC-MS因其在外部同位素标记技术中的应用而越来越受到青睐,该技术可以评估不同样品的标记效率。该方法为参与药用植物中次级代谢物合成的主要器官提供了重要的见解,可作为鉴定这些化合物合成器官的生物学方法的宝贵补充14,15。因此,这种方法不仅有助于比较各种标本之间的标记效率,而且揭示了参与植物次生代谢产物产生的关键器官,从而增强了我们对其生物合成的理解。

我们引入了一种新方法,将碳同位素标记与LC-MS检测相结合,以识别负责合成药用植物中次生代谢物的主要器官。巴黎皂苷 (PS) 具有多种药理活性,如抗癌、免疫调节和抗炎16,PPY 的需求量越来越大17。因此,我们以PPY幼苗为研究对象,并使用与LC-MS方法相关的13C6-葡萄糖标记,破译了叶子是合成巴黎皂苷VII(PS VII)(图1B)的主要器官。我们的方法包括四种不同的处理,涉及 13C6-葡萄糖对叶、根茎和茎维管束的喂养,以及非喂养对照。选择 13C6-葡萄糖具有战略意义,因为它通过呼吸迅速代谢成乙酰辅酶 A,然后促进 PS 合成。利用 13C 的自然丰度,我们利用气相色谱稳定同位素比质谱仪 (GC-IRMS) 系统评估了各种植物器官的 13C/12C 比值,并分析了 PS VII 和巴黎皂苷 II (PS II) (图 1B) 分子中的同位素离子峰比。我们的方法利用了 13种 C 标记的植物次级代谢物前体和尖端的质谱技术,为传统的碳同位素标记方法提供了一种更简单、更准确的替代方案。这种新方法不仅加深了我们对药用植物次生代谢产物合成器官的理解,而且为未来探索这些化合物的生物合成途径奠定了坚实的基础。

Protocol

1. 实验准备 确保在植物生长过程中,温室相对湿度为75%,昼夜温度为20°C/10°C,光周期为白天12 h和夜间12 h,光照强度为100 μmol·m-2·s-1。通过发光二极管 (LED) 灯提供辐照度,在 LED 灯和植物树冠之间保持 30 厘米的距离。注:光周期和光照强度是根据云南生长期的日照时数计算的。辐照度通常由量子传感器测量(参见 材料表)。根据药用植物…

Representative Results

为了确认根茎中 13C6-葡萄糖的供应是成功的,我们进一步分析了根茎中 13C/12C同位素比率。处理3和处理4的 13C / 12C同位素比值远高于处理2(图1A)。结果表明,处理3和处理4的 13C6-葡萄糖通过摄入进入根茎。 13个C同位素峰的比率,如(M+1) −/M−、(M+2) −</s…

Discussion

该协议的成功实施取决于对植物生理特性、组织、器官和次生代谢产物的全面研究。方案中概述的实验设计方法为研究植物次生代谢物的生物合成途径奠定了坚实的基础。该实验的关键因素是(1)确定多年生幼苗的年龄和(2)选择正确的同位素标记-检测时间。药用植物分为多年生植物和一年生植物,每种植物都有不同的次生代谢产物合成和积累模式。本实验旨在通过分析药用植物次生代谢产物?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作由中国国家自然科学基金青年计划项目(第82304670号)资助。

Materials

0.1 % Formic acid water Chengdu Kelong Chemical Reagent Factory 44890
13C6-Glucose powder MERCK 110187-42-3
Acetonitrile Chengdu Kelong Chemical Reagent Factory 44890
AUTOSAMPLER VIALS Biosharp Biotechnology Company 44866
BEH C18 column Waters,Milfor,MA 1.7μm,2.1*100 mm
CNC ultrasonic cleaner Kunshan Ultrasound Instrument Co., Ltd KQ-600DE
Compound DiscovererTM  software Thermo Scientific, Fremont,CA 3
Compound DiscovererTM  software  Thermo Scientific,Fremont,CA 3
Electric constant temperature blast drying oven DHG-9146A
Electronic analytical balance Sedolis Scientific Instruments Beijing Co., Ltd SOP
Ethanol  Chengdu Kelong Chemical Reagent Factory 44955
Fully automatic sample rapid grinder Shanghai Jingxin Technology Tissuelyser-48
Gas Chromatography-Stable Isotope Ratio Mass Spectrometer Thermo Fisher Delta V Advantage
Hoagland solution Sigma-Aldrich H2295-1L
Hydroponic tank JRD 1020421
Isodat software Thermo Fisher Scientific 3
Liquid chromatography high-resolution mass spectrometry Agilent Technology  Agilent 1260 -6120 
Nitrogen manufacturing instrument PEAK SCIENTIFIC Genius SQ 24
Organic phase filter Tianjin Jinteng Experimental Equipment Co., Ltd 44890
Oxygen pump Magic Dragon MFL
Quantum sensor Highpoint UPRtek
Scalpel Handskit 11-23
Sprinkling can CHUSHI WJ-001
Xcalibur  software Thermo Fisher Scientific 4.2

References

  1. Erb, M., Kliebenstein, D. J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 184 (1), 39-52 (2020).
  2. Li, Y., Kong, D., Fu, Y., Sussman, M. R., Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem. 148, 80-89 (2020).
  3. Liu, S., et al. Genetic and molecular dissection of ginseng (panax ginseng mey.) germplasm using high-density genic snp markers, secondary metabolites, and gene expressions. Front Plant Sci. 14, 1165349 (2023).
  4. Chen, X., Wang, Y., Zhao, H., Fu, X., Fang, S. Localization and dynamic change of saponins in cyclocarya paliurus (batal.) iljinskaja. PloS One. 14 (10), e0223421 (2019).
  5. Yuan, M., et al. Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by lc-ms/ms. Nat Protoc. 14 (2), 313-330 (2019).
  6. Cavalli, F. M. G., Bourgon, R., Vaquerizas, J. M., Luscombe, N. M. Specond: A method to detect condition-specific gene expression. Genome Biol. 12 (10), 101 (2011).
  7. Epron, D., et al. Pulse-labelling trees to study carbon allocation dynamics: A review of methods, current knowledge and future prospects. Tree Physiology. 32 (6), 776-798 (2012).
  8. Varman, A. M., He, L., You, L., Hollinshead, W., Tang, Y. J. Elucidation of intrinsic biosynthesis yields using 13c-based metabolism analysis. Microb Cell Fact. 13 (1), 42 (2014).
  9. Meng-Meng, G., Zhen-Yu, Z., Yu, Z., Qiu-Lin, Y., Ying, W. Systematic extraction and stable isotope determination of different biomarkers from single leaf of reticulate vein plants. Journal of Shaanxi University of Science & Technology. 41 (01), 72-79 (2023).
  10. Zhang, H., et al. A convenient lc-ms method for assessment of glucose kinetics in vivo with d-[13c6]glucose as a tracer. Clin Chem. 55 (3), 527-532 (2009).
  11. Chassy, A. W., Adams, D. O., Waterhouse, A. L. Tracing phenolic metabolism in vitis vinifera berries with 13c6-phenylalanine: Implication of an unidentified intermediate reservoir. J Agric Food Chem. 62 (11), 2321-2326 (2014).
  12. Lozac’h, F., et al. Evaluation of cams for 14c microtracer adme studies: Opportunities to change the current drug development paradigm. Bioanalysis. 10 (5), 321-339 (2018).
  13. Sulyok, M., Stadler, D., Steiner, D., Krska, R. Validation of an lc-ms/ms-based dilute-and-shoot approach for the quantification of &gt; 500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal Bioanal Chem. 412 (11), 2607-2620 (2020).
  14. Serra, F., et al. Inter-laboratory comparison of elemental analysis and gas chromatography combustion isotope ratio mass spectrometry (gc-c-irms). Part i: Delta13c measurements of selected compounds for the development of an isotopic grob-test. J Mass Spectrom. 42 (3), 361-369 (2007).
  15. Jung, J. -. Y., Oh, M. -. K. Isotope labeling pattern study of central carbon metabolites using gc/ms. J Chromatogr B Analyt Technol Biomed Life Sci. 974, 101-108 (2015).
  16. Ding, Y. G., et al. The traditional uses, phytochemistry, and pharmacological properties of paris l. (liliaceae): A review. J Ethnopharmacol. 278, 114293 (2021).
  17. Cunningham, A. B., et al. Paris in the spring: A review of the trade, conservation and opportunities in the shift from wild harvest to cultivation of paris polyphylla (trilliaceae). J Ethnopharmacol. 222, 208-216 (2018).
  18. Madikizela, L. M., Ncube, S., Chimuka, L. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review. Sci Total Environ. 636, 477-486 (2018).
  19. Tagami, K., Uchida, S. Online stable carbon isotope ratio measurement in formic acid, acetic acid, methanol and ethanol in water by high performance liquid chromatography-isotope ratio mass spectrometry. Anal Chim Acta. 614 (2), 165-172 (2008).
  20. Li, Y., et al. The combination of red and blue light increases the biomass and steroidal saponin contents of paris polyphylla var. Yunnanensis. Ind Crops Prod. 194, 116311 (2023).
  21. Wang, G., et al. Tissue distribution, metabolism and absorption of rhizoma paridis saponins in the rats. J Ethnopharmacoly. 273, 114038 (2021).
  22. Peng, S., et al. Progress in the study of differences in the types and contents of steroidal saponins in paris. Polyphylla smith var. Chinensis (franch.) hara. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology. 24 (05), 2014-2025 (2022).
  23. Alami, M. M., et al. The current developments in medicinal plant genomics enabled the diversification of secondary metabolites’ biosynthesis. Int J Mol Sci. 23 (24), 15932 (2022).
  24. Wen, F., et al. The synthesis of paris saponin vii mainly occurs in leaves and is promoted by light intensity. Front Plant Sci. 14, 1199215 (2023).
  25. Siadjeu, C., Pucker, B. Medicinal plant genomics. BMC Genomics. 24 (1), 429 (2023).
  26. Tian, C., et al. Top-down phenomics of arabidopsis thaliana: Metabolic profiling by one- and two-dimensional nuclear magnetic resonance spectroscopy and transcriptome analysis of albino mutants. J Biol Chem. 282 (25), 18532-18541 (2007).
  27. Masakapalli, S. K., et al. Metabolic flux phenotype of tobacco hairy roots engineered for increased geraniol production. Phytochemistry. 99, 73-85 (2014).
  28. Schwender, J., Ohlrogge, J. B., Shachar-Hill, Y. A flux model of glycolysis and the oxidative pentosephosphate pathway in developing brassica napus embryos. J Biol Chem. 278 (32), 29442-29453 (2003).

Play Video

Cite This Article
Chen, S., Chang, F., Lin, L., Wang, Y., Wen, F., Zhou, T., Pei, J. 13C6-Glucose Labeling Associated with LC-MS: Identification of Plant Primary Organs in Secondary Metabolite Synthesis. J. Vis. Exp. (205), e66578, doi:10.3791/66578 (2024).

View Video