Summary

通过壳聚糖介导的能量转移增强姜 提取物的光致发光,用于纺织品鉴定应用

Published: December 22, 2023
doi:

Summary

光致发光是当今使用的最有效的认证机制之一。利用和增强具有固有光致发光特性的天然材料,并将其纳入织物基材中,可以开发用于智能应用的绿色、可持续和功能性纺织品。

Abstract

用于安全标记的染料在保护纺织、制药、食品和制造业等各个领域的产品完整性方面发挥着关键作用。然而,大多数用作安全标记的商业染料价格昂贵,并且可能含有对人类健康构成风险的有毒有害物质。姜黄素是一种在姜黄中发现的天然酚类化合物,具有独特的光致发光特性以及鲜艳的黄色,使其成为认证应用的潜在候选材料。本研究展示了一种具有成本效益和环保的方法,用于开发用于纺织品认证的姜黄素染料的增强光致发光发射。采用超声辅助溶剂萃取法从 龙苷中 提取姜黄素。将提取物浸渍涂并染色到纺织基材中。壳聚糖被引入作为后媒染剂来稳定姜黄素和作为共敏剂。姜黄素与壳聚糖的共敏化触发能量转移以增强其发光强度。424nm处的紫外可见吸收峰与姜黄素的特征吸收有关。光致发光测量显示,在545 nm处有宽发射峰值,壳聚糖诱导的能量转移显著增强,因此作为天然衍生的光致发光染料在认证应用中显示出巨大的潜力。

Introduction

假冒伪劣被认为是全球各行各业的祸害。市场上假冒产品的迅速激增造成了经济破坏,阻碍了主要发明人的生计1,2,3,4,5,6。这在 20207 年因对新兴假冒产品的持续关注而凸显出来,这从出版物标题中包含“反假冒”或“假冒”的出版物的日益增长的趋势中可以看出。自 2019 年上次报告以来,与假冒相关的出版物显着增加,这表明正在做出相当大的努力来打击欺诈商品的生产和分销。另一方面,它也可能非常令人担忧,因为它标志着假冒行业的发展,如果不得到有效解决,预计会持续下去。纺织业并没有摆脱这个问题,因为假冒纺织品的存在严重影响了真正的销售商、制造商和织工等人的生计 3,8。例如,西非的纺织业长期以来一直被认为是世界主要出口市场之一。然而,据报道9,大约85%的市场份额由侵犯西非纺织品商标的走私纺织品占据。亚洲、美洲和欧洲等其他大陆也报告了假冒的影响,表明这场危机已经达到了无法控制的程度,并对已经陷入困境的纺织业构成了重大威胁 2,3,4,10,11,12。

随着科学、技术和创新的快速发展,研究人员承担起了开发用于防伪应用的功能性材料的角色。使用隐蔽技术是打击欺诈性商品生产的最常见和最有效的方法之一。它涉及利用光致发光材料作为安全染料,当受到不同波长的照射时表现出特定的光发射13,14。然而,市场上的一些光致发光染料在高浓度下可能会产生毒性,从而对人类健康和环境构成威胁15,16

姜黄 (Curcuma longa) 是一种必不可少的植物,用于各种应用,例如油漆、调味剂、药物、化妆品和织物染料17。根茎中存在天然存在的酚类化合物,称为姜黄素类化合物。这些姜黄素类化合物包括姜黄素、去甲氧基姜黄素和双去甲氧基姜黄素,其中姜黄素是导致鲜艳的黄色至橙色和姜黄特性的主要成分18.姜黄素,也称为1,7-双(4-羟基-3-甲氧基苯基)-1,6-庚二烯-3,5-二酮19,20,经验分子式为C21H20O 6,由于其防腐、抗炎、抗菌和抗氧化特性,在生物医学和制药领域引起了大量关注17,18,21,22,23.有趣的是,姜黄素还具有光谱和光化学特性。特别值得注意的是,当受到紫外(UV)激发时,其强烈的光致发光特性仅被少数研究探索19,24,25。鉴于这些特性,姜黄素具有疏水性和无毒特性,成为认证标记的理想着色剂。

从姜黄中提取姜黄素最早是在 1800 年代初期报道的。在过去的几个世纪里,已经设计和改进了许多提取方法和技术,以实现更高的产量26,27,28,29,30,31,32,33。传统的溶剂萃取是一种广泛使用的方法,因为它采用有机溶剂,如乙醇、甲醇、丙酮和己烷等,从姜黄中分离姜黄素 34,35。该方法经过修改,再加上更先进的技术,如微波辅助提取 (MAE)18,36,37、索氏提取 38,39、酶辅助提取 (EAE)39,40 和超声波提取36,除其他外,以提高产量。通常,溶剂萃取方法因其多功能性、低能耗和成本效益而应用于天然染料萃取,使其成为纺织等可扩展行业的理想选择。

姜黄素因其独特的黄色调而被整合为纺织品的天然染料。然而,天然染料对纺织纤维的吸附不良是一个挑战,阻碍了其商业可行性41.媒染剂,如金属、多糖和其他有机化合物,作为常见的粘合剂,以增强天然染料对织物的亲和力。壳聚糖是一种源自甲壳类动物的多糖,由于其丰富的自然含量、生物相容性和耐洗性,已被广泛用作替代媒染剂42。本研究报告了一种简单而直接的方法,用于制备基于姜黄素的认证标记。通过超声辅助溶剂萃取法获得粗姜黄素提取物。在纺织基材上全面研究了提取的姜黄素的光致发光性能,并进一步增强了壳聚糖作为媒染剂。这证明了作为天然衍生的光致发光染料在认证应用中的巨大潜力。

Protocol

1.姜黄素的提取 在 50 mL 离心管中称取 3 g 龙梭菌 粉。注:使用50 mL离心管简化离心过程,并在单个容器上处理提取。 向离心管中加入 38 mL 乙醇(AR,99%)。轻轻摇晃试管,确保乙醇与 龙梭菌 粉末充分混合。 在正常声波模式和高强度设置下对试管进行超声处理 30 分钟以进行提取。 为了分离固体材料,将管以4430× g 离心10分钟。使?…

Representative Results

纤维的 FTIR 分析确定了多测试仪织物 #1 中代表的每种纤维的化学结构。FTIR光谱用于表征多测试织物的每个组分中存在的官能团。如 补充图 1所示,由于N-H官能团的存在而发生这种区别,这导致织物被细分为含氮(补充图 1A)和纤维素(补充图 1B)。蛋白质基纤维(如精纺羊毛和丝绸)和合成聚?…

Discussion

纺织品整理是行业内的常见做法,目的是在织物上加入额外的功能特性,使其更适合特定应用45,47,48。在这项研究中,提取的姜黄素被用作天然染料,作为纺织品应用的认证机制。这些方案不仅强调了从姜黄中提取姜黄素,还强调了将这些方法用于纺织应用的不同优势。

鉴于纺织业被认为是污染最严重的?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了菲律宾科学技术部-菲律宾纺织研究所的支持,该项目名为“菲律宾手摇织机织造业数字化计划下实现菲律宾纺织部门可持续性和保护的秘密技术”的 DOST 援助赠款 (DOST-GIA) 项目。

Materials

(Curcumin) C. longa, spray dried  N/A N/A Naturally Sourced
100 mL Graduated Cylinder n/a
10 mL Serological Pipette n/a
200 mL Beaker n/a
365 nm UV Light AloneFire SV004 LG
50 mL Centeifuge Tube n/a
AATCC Multitester Fabric Testfabrics, Inc. 401002 AATCC Multifiber test fabric # 1 precut pieces of 2 X 2 inches, Heat Sealed
Analytical Balance Satorius BSA 224S-CW
Aspirator n/a
ATR- FTIR Bruker Bruker Tensor II
Centrifuge Hermle Labortechnik GmbH Z 206 A
Chitosan Tokyo Chemical Industries 9012-76-4
Digital  Camera ToupTek XCAM1080PHB
Drying Rack n/a
Ethanol Chem-Supply 64-17-5 Undenatured, 99.9% purity
Glacial Acetic Acid RCI-Labscan 64-19-7 AR Grade, 99.8% purity
Glass Slide n/a
Iron Clamp n/a
Iron Stand n/a
Magnetic Stirrer Corning PC-620D
Pasteur Pipette n/a
Propan-2-ol RCI-Labscan 67-63-0 AR Grade, 99.8% purity
Sonicator Jeio Tech Inc. UCS-20
Spectrofluorometer  Horiba (Jovin Yvon) Horiba Fluoromax Plus
Stirring Bar n/a
UV-Vis Spectrophotometer Agilent Cary UV 100
Wash bottle n/a
Zoom Stereo Microscope Olympus SZ61

References

  1. Eisend, M., Hartmann, P., Apaolaza, V. Who buys counterfeit luxury brands? A meta-analytic synthesis of consumers in developing and developed markets. J Int Market. 25 (4), 89-111 (2017).
  2. Agrawal, T. K., Koehl, L., Campagne, C. Uncertainty modelling in knowledge engineering and decision making. World Scientific Procedings Series. , (2012).
  3. Cakin, M. B., Dincer, A. T. A. . Turkish studies-comparative religious studies. , (2023).
  4. Albarq, A. N. Counterfeit products and the role of the consumer in Saudi Arabia. Am J Indust Busi Manag. 5 (12), 819-827 (2015).
  5. Boamah, F., Ayesu, S. M., Crentsil, T., Pardie, S. P. The effect of academic textiles studies on the Ghana textile industry. Africa J Appl Res. 8 (2), 186-196 (2022).
  6. Bruce-Amarty, E. J., Amissah, E. R. K., Safo-Ankama, K. The decline of Ghana’s textile industry: Its effects on textile education in Ghana. Art Design Studies. 22, 36-44 (2014).
  7. Abdollahi, A., Roghani-Mamaqani, H., Razavi, B., Salami-Kalajahi, M. Photoluminescent and chromic nanomaterials for anticounterfeiting technologies: Recent advances and future challenges. ACS Nano. 14 (11), 14417-14492 (2020).
  8. Norum, P. S., Cuno, A. Analysis of the demand for counterfeit goods. J Fashion Market Manage: An Int J. 15 (1), 27-40 (2011).
  9. Okonkwo, I. E., Abiala, W. Justification of counterfeits a microscopic view from a trademark perspective. Mayne Quart Law Rev. 6 (4), 1-7 (2021).
  10. Quoquab, F., Pahlevan, S., Mohammad, J., Thurasamy, R. Factors affecting consumers’ intention to purchase counterfeit product. Asia Pac J Market Log. 29 (4), 837-853 (2017).
  11. Dalal, H. Challenges: A study of Textile Industry in India. Pramana Res J. 9 (5), 423-429 (2019).
  12. Mushi, H. M., Mohd Noor, N. A. Consumer behaviour and counterfeit purchase in the Tanzanian mainland. Global Bus Manage Rev (GBMR). 8 (1), 49-64 (2022).
  13. Ren, S., et al. Highly bright carbon quantum dots for flexible anti-counterfeiting. J Mat Chem C. 10 (31), 11338-11346 (2022).
  14. Liu, R. S. . Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications. , (2017).
  15. Chang, K., et al. Conjugated polymer dots for ultra-stable full-color fluorescence patterning. Small. 10 (21), 4270-4275 (2014).
  16. Fatahi, Z., Esfandiari, N., Ranjbar, Z. A New anti-counterfeiting feature relying on invisible non-toxic fluorescent carbon dots. J Anal Test. 4 (4), 307-315 (2020).
  17. Abd El-Hack, M. E., et al. Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. J Sci Food Agri. 101 (14), 5747-5762 (2021).
  18. Bener, M., Özyürek, M., Güçlü, K., Apak, R. Optimization of microwave-assisted extraction of curcumin from Curcuma longa L. (Turmeric) and evaluation of antioxidant activity in multi-test systems. Rec. Nat. Prod. 10 (5), 542-554 (2016).
  19. Van Nong, H., et al. Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the northern Vietnam. Springerplus. 5 (1), 1147 (2016).
  20. Kolev, T. M., Velcheva, E. A., Stamboliyska, B. A., Spiteller, M. DFT and experimental studies of the structure and vibrational spectra of curcumin. Int J Quantum Chem. 102 (6), 1069-1079 (2005).
  21. Mohajeri, M., Behnam, B., Tasbandi, A., Jamialahmadi, T., Sahebkar, A. . Studies on biomarkers and new targets in aging research in Iran: Focus on turmeric and curcumin. , (2021).
  22. Hay, E., et al. Therapeutic effects of turmeric in several diseases: An overview. Chem Biol Interact. 310, 108729 (2019).
  23. Ahmad, R. S., et al. Biochemistry, safety, pharmacological activities, and clinical applications of turmeric: A mechanistic review. Evid Based Complement Alternat Med. 2020, 7656919 (2020).
  24. Tsaplev, Y. B., Lapina, V. A., Trofimov, A. V. Curcumin in dimethyl sulfoxide: Stability, spectral, luminescent and acid-base properties. Dyes Pigments. 177, 108327 (2020).
  25. Chignell, C. F., et al. Spectral and photochemical properties of curcumin. Photochem Photobiol. 59 (3), 295-302 (1994).
  26. Sun, X., Gao, C., Cao, W., Yang, X., Wang, E. Capillary electrophoresis with amperometric detection of curcumin in Chinese herbal medicine pretreated by solid-phase extraction. J Chromatogr A. 962 (1-2), 117-125 (2002).
  27. Takenaka, M., et al. Effective extraction of curcuminoids by grinding turmeric (Curcuma longa) with medium-chain triacylglycerols. Food Sci Technol Res. 19 (4), 655-659 (2013).
  28. Heffernan, C., Ukrainczyk, M., Gamidi, R. K., Hodnett, B. K., Rasmuson, &. #. 1. 9. 7. ;. C. Extraction and purification of curcuminoids from crude curcumin by a combination of crystallization and chromatography. Org Process Res Dev. 21 (6), 821-826 (2017).
  29. Paramasivam, M., Poi, R., Banerjee, H., Bandyopadhyay, A. High-performance thin layer chromatographic method for quantitative determination of curcuminoids in Curcuma longa germplasm. Food Chem. 113 (2), 640-644 (2009).
  30. Priyadarsini, K. I. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 19 (12), 20091-20112 (2014).
  31. Nhujak, T., Saisuwan, W., Srisa-art, M., Petsom, A. Microemulsion electrokinetic chromatography for separation and analysis of curcuminoids in turmeric samples. J Sep Sci. 29 (5), 666-676 (2006).
  32. Kim, Y. J., Lee, H. J., Shin, Y. Optimization and validation of high-performance liquid chromatography method for individual curcuminoids in turmeric by heat-refluxed extraction. J Agri Food Chem. 61 (46), 10911-10918 (2013).
  33. Patel, K., Krishna, G., Sokoloski, E., Ito, Y. Preparative separation of curcuminoids from crude curcumin and turemric powder by pH-zone refining countercurrent chromatography. J Liq Chrom Rel Tech. 23 (14), 2209-2218 (2007).
  34. Paulucci, V. P., Couto, R. O., Teixeira, C. C. C., Freitas, L. A. P. Optimization of the extraction of curcumin from Curcuma longa rhizomes. Rev Bras Farmacogn. 23 (1), 94-100 (2013).
  35. Ali, I., Haque, A., Saleem, K. Separation and identification of curcuminoids in turmeric powder by HPLC using phenyl column. Anal. Methods. 6 (8), 2526-2536 (2014).
  36. Li, M., Ngadi, M. O., Ma, Y. Optimisation of pulsed ultrasonic and microwave-assisted extraction for curcuminoids by response surface methodology and kinetic study. Food Chem. 165, 29-34 (2014).
  37. Mandal, V., Mohan, Y., Hemalatha, S. Microwave assisted extraction of curcumin by sample-solvent dual heating mechanism using Taguchi L9 orthogonal design. J Pharm Biomed Anal. 46 (2), 322-327 (2008).
  38. Shankar, M., Palani, S., Nivedha, D. Extraction of Curcumin from Raw Turmeric (Curcuma longa.)-A Comparative Study, Using Soxhlet, Chemical, Chromatographic, and Spectroscopic Methods and Determining its Bioavailability. Int J Mod Dev in Eng Sci. 1 (6), 67-72 (2022).
  39. Kurmudle, N., Kagliwal, L. D., Bankar, S. B., Singhal, R. S. Enzyme-assisted extraction for enhanced yields of turmeric oleoresin and its constituents. Food Biosci. 3, 36-41 (2013).
  40. Chassagnez-Méndez, A. L., Corrêa, N. C. F., França, L. F. d., Machado, N. T. d., Araújo, M. E. A mass transfer model applied to the supercritical extraction with CO2 of curcumins from turmeric rhizomes (Curcuma longa L). Brazil J Chem Eng. 17, 315-322 (2000).
  41. Ghoreishian, S. M., Maleknia, L., Mirzapour, H., Norouzi, M. Antibacterial properties and color fastness of silk fabric dyed with turmeric extract. Fibers Poly. 14 (2), 201-207 (2013).
  42. Safapour, S., Sadeghi-Kiakhani, M., Doustmohammadi, S. Chitosan-cyanuric chloride hybrid as an efficient novel bio-mordant for improvement of cochineal natural dye absorption on wool yarns. J Textile Inst. 110 (1), 81-88 (2018).
  43. Vahur, S., Teearu, A., Peets, P., Joosu, L., Leito, I. ATR-FT-IR spectral collection of conservation materials in the extended region of 4000-80 cm(-)(1). Anal Bioanal Chem. 408 (13), 3373-3379 (2016).
  44. Gunasekaran, S., Natarajan, R., Natarajan, S., Rathikha, R. Structural investigation on curcumin. Asian J Chem. 20 (4), 2903 (2008).
  45. Kim, H. J., et al. Curcumin dye extracted from Curcuma longa L. used as sensitizers for efficient dye-sensitized solar cells. Int J Electrochem Sci. 8 (6), 8320-8328 (2013).
  46. Singh, P. K., Wani, K., Kaul-Ghanekar, R., Prabhune, A., Ogale, S. From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Adv. 4 (104), 60334-60341 (2014).
  47. Holmquist, H., et al. Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing. Environ Int. 91, 251-264 (2016).
  48. Berradi, M., et al. Textile finishing dyes and their impact on aquatic environs. Heliyon. 5 (11), e02711 (2019).
  49. Behera, M., Nayak, J., Banerjee, S., Chakrabortty, S., Tripathy, S. K. A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: An integrated system design approach. J Environ Chem Eng. 9 (4), 105277 (2021).
  50. Massella, D., Giraud, S., Guan, J., Ferri, A., Salaün, F. Textiles for health: a review of textile fabrics treated with chitosan microcapsules. Environ Chem Lett. 17 (4), 1787-1800 (2019).
  51. Wang, F., Huang, W., Jiang, L., Tang, B. Quantitative determination of proteins based on strong fluorescence enhancement in curcumin-chitosan-proteins system. J Fluoresc. 22 (2), 615-622 (2012).
  52. Yang, M., Wu, Y., Li, J., Zhou, H., Wang, X. Binding of curcumin with bovine serum albumin in the presence of iota-carrageenan and implications on the stability and antioxidant activity of curcumin. J Agric Food Chem. 61 (29), 7150-7155 (2013).
  53. Sneharani, A. H., Karakkat, J. V., Singh, S. A., Rao, A. G. Interaction of curcumin with beta-lactoglobulin-stability, spectroscopic analysis, and molecular modeling of the complex. J Agric Food Chem. 58 (20), 11130-11139 (2010).

Play Video

Cite This Article
De Guzman, G. N. A., Magalong, J. R. S., Bantang, J. P. O., Leaño, Jr., J. L. Enhanced Photoluminescence of Curcuma longa Extracts via Chitosan-Mediated Energy Transfer for Textile Authentication Applications. J. Vis. Exp. (202), e66035, doi:10.3791/66035 (2023).

View Video