Os sítios de contato mitocondrial são complexos proteicos que interagem com proteínas da membrana interna e externa mitocondriais. Esses sítios são essenciais para a comunicação entre as membranas mitocondriais e, portanto, entre o citosol e a matriz mitocondrial. Aqui, descrevemos um método para identificar candidatos que se qualificam para esta classe específica de proteínas.
As mitocôndrias estão presentes em praticamente todas as células eucarióticas e desempenham funções essenciais que vão muito além da produção de energia, por exemplo, a síntese de clusters ferro-enxofre, lipídios ou proteínas, tamponamento de Ca2+ e a indução de apoptose. Da mesma forma, a disfunção mitocondrial resulta em doenças humanas graves, como câncer, diabetes e neurodegeneração. Para desempenhar essas funções, as mitocôndrias têm que se comunicar com o resto da célula através de seu envelope, que consiste em duas membranas. Portanto, essas duas membranas têm que interagir constantemente. Os sítios de contato proteico entre as membranas interna e externa mitocondrial são essenciais nesse sentido. Até o momento, vários locais de contato foram identificados. No método aqui descrito, mitocôndrias de Saccharomyces cerevisiae são usadas para isolar sítios de contato e, assim, identificar candidatos que se qualificam para proteínas de sítio de contato. Usamos este método para identificar o sítio de contato mitocondrial e o complexo do sistema organizador de cristas (MICOS), um dos principais complexos formadores de sítios de contato na membrana interna mitocondrial, que é conservado de leveduras para humanos. Recentemente, aprimoramos ainda mais este método para identificar um novo sítio de contato consistindo de Cqd1 e o complexo Por1-Om14.
As mitocôndrias desempenham uma variedade de funções diferentes em eucariotos, sendo a mais conhecida a produção de ATP através da fosforilação oxidativa. Outras funções incluem a produção de clusters ferro-enxofre, síntese lipídica e, em eucariotos superiores, sinalização de Ca2+ e indução de apoptose 1,2,3,4. Essas funções estão inseparavelmente ligadas à sua complexa ultraestrutura.
A ultraestrutura mitocondrial foi primeiramente descrita por microscopia eletrônica5. Foi demonstrado que as mitocôndrias são organelas bastante complexas que consistem em duas membranas: a membrana externa mitocondrial e a membrana interna mitocondrial. Assim, dois compartimentos aquosos são formados por essas membranas: o espaço intermembrana e a matriz. A membrana interna mitocondrial pode ser ainda mais dividida em diferentes seções. A membrana limite interna permanece próxima à membrana externa, e as cristas formam invaginações. As chamadas junções cristas conectam a membrana limite interna e as cristas (Figura 1). Além disso, micrografias eletrônicas de mitocôndrias osmoticamente encolhidas revelam que existem locais nos quais as membranas mitocondriais estão firmemente conectadas 6,7. Esses chamados sítios de contato são formados por complexos proteicos que abrangem as duas membranas (Figura 1). Acredita-se que esses sítios de interação sejam essenciais para a viabilidade celular devido à sua importância para a regulação da dinâmica e herança mitocondrial, bem como para a transferência de metabólitos e sinais entre o citosol e amatriz8.
O complexo MICOS na membrana interna mitocondrial é provavelmente o mais bem caracterizado e o mais versátil complexo formador de sítios de contato. O MICOS foi descrito em levedura em 2011 e consiste de seis subunidades 9,10,1 1: Mic60, Mic27, Mic26, Mic19, Mic12 e Mic10. Estes formam um complexo de aproximadamente 1,5 MDa que se localiza nas junções cristais 9,10,11. A deleção de qualquer uma das subunidades principais, Mic10 ou Mic60, leva à ausência desse complexo 9,11, o que significa que essas duas subunidades são essenciais para a estabilidade da MICOS. Curiosamente, o MICOS forma não apenas um, mas múltiplos sítios de contato com várias proteínas e complexos da membrana externa mitocondrial: o complexo TOM 11,12, o complexo TOB/SAM 9,12,13,14,15,16, o complexo Fzo1-Ugo19, Por1 10, OM45 10 e Miro 17. Isso indica fortemente que o complexo MICOS está envolvido em vários processos mitocondriais, como a importação de proteínas, o metabolismo de fosfolipídios e a geração da ultraestrutura mitocondrial18. Esta última função é provavelmente a principal função da MICOS, pois a ausência do complexo MICOS induzida pela deleção da CIM10 ou CIM60 leva a uma ultraestrutura mitocondrial anormal que praticamente carece completamente de cristas regulares. Em vez disso, as vesículas da membrana interna sem conexão com a membrana de contorno interno se acumulam19,20. É importante ressaltar que o MICOS é conservado em forma e função desde a levedura até o ser humano21. A associação de mutações nas subunidades do MICOS com doenças humanas graves também enfatiza sua importância para eucariotossuperiores22,23. Embora o MICOS seja altamente versátil, sites de contato adicionais devem existir (com base em nossas observações não publicadas). De fato, vários outros sítios de contato foram identificados, por exemplo, as máquinas de fusão mitocondrial Mgm1-Ugo1/Fzo124,25,26 ou Mdm31-Por1, que está envolvida na biossíntese da cardiolipina fosfolipídea mitocondrial específica27. Recentemente, aprimoramos o método que nos levou à identificação do MICOS para identificar Cqd1 como parte de um novo sítio de contato formado com o complexo de membrana externa Por1-Om1428. Curiosamente, esse sítio de contato também parece estar envolvido em múltiplos processos, como a homeostase da membrana mitocondrial, o metabolismo de fosfolipídios e a distribuição da coenzima Q28,29.
Aqui, utilizamos uma variação do fracionamento mitocondrial descrito anteriormente9,30,31,32,33. O tratamento osmótico das mitocôndrias leva à ruptura da membrana externa mitocondrial e a um encolhimento do espaço matricial, deixando as duas membranas apenas próximas nos locais de contato. Isso permite a geração de vesículas que consistem exclusivamente de membrana externa mitocondrial ou membrana interna mitocondrial ou em locais de contato de ambas as membranas através de sonicação leve. Devido à membrana interna mitocondrial possuir uma relação proteína-lipídio muito maior, as vesículas da membrana interna mitocondrial exibem uma densidade maior em comparação com as vesículas da membrana externa mitocondrial. A diferença de densidade pode ser usada para separar as vesículas da membrana através da centrifugação por gradiente de densidade flutuante de sacarose. Assim, as vesículas da membrana externa mitocondrial acumulam-se em baixas concentrações de sacarose, enquanto as vesículas da membrana interna mitocondrial são enriquecidas em altas concentrações de sacarose. As vesículas contendo sítios de contato concentram-se em concentrações intermediárias de sacarose (Figura 2). O protocolo a seguir descreve detalhadamente esse método aprimorado, que requer menos equipamentos, tempo e energia especializados em comparação com o nosso método previamente estabelecido32, e fornece uma ferramenta útil para a identificação de possíveis proteínas do sítio de contato.
O subfracionamento mitocondrial é um experimento complicado com várias etapas altamente complexas. Assim, buscou-se aprimorar ainda mais e, até certo ponto, simplificar nosso método estabelecido32. Aqui, os desafios foram a exigência de equipamentos complicados e altamente especializados, que muitas vezes são construções individuais, e o enorme consumo de tempo e energia. Para tanto, procurou-se remover as bombas e construções individuais utilizadas para fundição e colheita do gradient…
The authors have nothing to disclose.
M.E.H. reconhece a Deutsche Forschungsgemeinschaft (DFG), projeto número 413985647, pelo apoio financeiro. Os autores agradecem ao Dr. Michael Kiebler, Ludwig-Maximilians University, Munique, por seu generoso e extenso apoio. Somos gratos a Walter Neupert por sua contribuição científica, discussões úteis e inspiração contínua. J.F. agradece à Graduate School Life Science Munich (LSM) pelo apoio.
13.2 mL, Open-Top Thinwall Ultra-Clear Tube, 14 x 89mm | Beckman Instruments, Germany | 344059 | |
50 mL, Open-Top Thickwall Polycarbonate Open-Top Tube, 29 x 104mm | Beckman Instruments, Germany | 363647 | |
A-25.50 Fixed-Angle Rotor- Aluminum, 8 x 50 mL, 25,000 rpm, 75,600 x g | Beckman Instruments, Germany | 363055 | |
Abbe refractometer | Zeiss, Germany | discontinued, any pipet controller will suffice |
|
accu-jet pro Pipet Controller | Brandtech, USA | BR26320 | discontinued, any pipet controller will suffice |
Beaker 1000 mL | DWK Life Science, Germany | C118.1 | |
Branson Digital Sonifier W-250 D | Branson Ultrasonics, USA | FIS15-338-125 | |
Branson Ultrasonic 3mm TAPERED MICROTIP | Branson Ultrasonics, USA | 101-148-062 | |
Branson Ultrasonics 200- and 400-Watt Sonifiers: Rosette Cooling Cell | Branson Ultrasonics, USA | 15-338-70 | |
Centrifuge Avanti JXN-26 | Beckman Instruments, Germany | B37912 | |
Centrifuge Optima XPN-100 ultra | Beckman Instruments, Germany | 8043-30-0031 | |
cOmplete Proteaseinhibtor-Cocktail | Roche, Switzerland | 11697498001 | |
D-Sorbit | Roth, Germany | 6213 | |
EDTA (Ethylendiamin-tetraacetic acid disodium salt dihydrate) | Roth, Germany | 8043 | |
Erlenmeyer flask, 100 mL | Roth, Germany | X747.1 | |
graduated pipette, Kl. B, 25:0, 0.1 | Hirschmann, Germany | 1180170 | |
graduated pipette, Kl. B, 5:0, 0.05 | Hirschmann, Germany | 1180153 | |
ice bath | neoLab, Germany | S12651 | |
Magnetic stirrer RCT basic | IKA-Werke GmbH, Germany | Z645060GB-1EA | |
MOPS (3-(N-Morpholino)propanesulphonic acid) | Gerbu, Germany | 1081 | |
MyPipetman Select P1000 | Gilson, USA | FP10006S | |
MyPipetman Select P20 | Gilson, USA | FP10003S | |
MyPipetman Select P200 | Gilson, USA | FP10005S | |
Omnifix 1 mL | Braun, Germany | 4022495251879 | |
Phenylmethylsulfonyl fluoride (PMSF) | Serva, Germany | 32395.03 | |
STERICAN cannula 21 Gx4 4/5 0.8×120 mm | Braun, Germany | 4022495052414 | |
stirring bar, 15 mm | VWR, USA | 442-0366 | |
Sucrose | Merck, Germany | S8501 | |
SW 41 Ti Swinging-Bucket Rotor | Beckman Instruments, Germany | 331362 | |
Test tubes | Eppendorf, Germany | 3810X | |
Tissue grinders, Potter-Elvehjem type, 2 mL glass vessel | VWR, USA | 432-0200 | |
Tissue grinders, Potter-Elvehjem type, 2 mL plunger with serrated tip | VWR, USA | 432-0212 | |
Trichloroacetic acid (TCA) | Sigma Aldrich, Germany | 33731 | discontinued, any TCA will suffice (CAS: 73-03-9) |
TRIS | Roth, Germany | 4855 |