マイクロ透析プロファイラーは、酸素-無酸素-土壌-水界面全体で溶解した間隙水溶質を その場 で最小限の妨害でサンプリングすることが説明されています。この装置は、土壌-水界面およびそれ以降の擾乱によって引き起こされる濃度-深さプロファイルの急速な変化を捕捉するように設計されています。
生物地球化学的プロセスは、擾乱に応答して、酸素-無酸素界面で空間的(ミリメートルスケール)と時間的(時間スケールから日スケール)の両方の次元で急速にシフトします。急速な生物地球化学的変化を解読するには、高い空間的および時間的サンプリング分解能を備えたin situの低侵襲ツールが必要です。ただし、利用可能なパッシブサンプリングデバイスは、使い捨ての性質や、サンプル調製の複雑さと作業負荷の多さのいずれかのために、多くの場合あまり役に立ちません。
この問題に対処するために、33本の個別のポリエーテルスルホンナノメンブレンチューブ(半透性、<20 nmの孔径)を1次元骨格(60 mm)に集積したマイクロ透析プロファイラーを確立し、間隙水中の溶解化合物を土壌-水界面全体で1.8 mm(外径プラス1間隔、つまりプローブ間0.1 mm)の高解像度で繰り返しサンプリングしました。サンプリングメカニズムは、濃度勾配拡散の原理に基づいています。脱気水の自動ローディングにより、酸素-無酸素界面全体の化学種への妨害を最小限に抑えることができます。
この論文では、毎日の土壌-水界面でのデバイスセットアップと連続間隙水サンプリングの手順について説明します。濃度-深度プロファイルは、灌漑によって引き起こされる外乱の前(6日目)と後(7日目)に選択的に測定されました。.結果は、特に酸化還元感受性元素(すなわち、鉄およびヒ素)について、濃度-深さプロファイルが急速に変化していることを示した。これらのプロトコルは、物理的、化学的、生物学的要因によって引き起こされるさまざまな擾乱の下で、土壌と水の界面全体の生物地球化学的応答を調査するのに役立ちます。この論文では、環境科学での使用の可能性に対するこの方法の利点と欠点について徹底的に説明しています。
酸素-無酸素界面は、生物地球化学的サイクルに不可欠な生物圏の一般的な特徴の1つです1。この界面は非常に不均一であり、空間範囲は堆積物/土壌-水界面のミリメートル1,2から海洋無酸素帯3,4の数千メートルに及ぶ。このインターフェースは、元素生物地球化学の複雑さを研究するための理想的な生息地です。
土壌-水界面は、センチメートル以内の典型的な酸素-無酸素勾配の特徴を持ち、メソコスム実験で容易に確立されます。地表水からの分子状酸素の消費から始めて、成層化された機能微生物群集は、ミリメートルスケール1でO2、pH、Eh勾配などのさまざまな勾配の発達を促進します。酸素-無酸素界面での生物地球化学的循環は、自然界のさまざまな擾乱に敏感です5,6。土砂や水田の場合、ゴミやわらなどの新鮮な有機物の投入、周期的な洪水や排水、気温の変動や極端な現象、生物乱流は、酸素-無酸素界面での生物地球化学的循環に変化を引き起こし、温室効果ガスの排出、富栄養化、特定の場所での汚染などの永続的な影響をもたらす可能性があります。したがって、土壌-水界面における酸素-無酸素勾配は、地球規模の大規模な生物地球化学的サイクルの研究のための窓を提供します。土壌-水界面に沿った溶存物質の高分解能での時空間サンプリングと分析は常に興味深いものでした。しかし、方法論の進歩は限られています。
破壊的な間隙水抽出の欠点を回避するために、間隙水化学の変化を回避し、サンプル調製の複雑さに対処するために、非破壊パッシブサンプリングがますます使用されています7。in situ透析サンプラー(ピーパーとして知られる)8、薄膜拡散平衡化(DET)9、薄膜拡散勾配(DGT)10など、高精度のin situサンプリング(マイクロメートルからセンチメートルスケール)を実行できるいくつかのデバイスが広く使用されています。溶解した物質は、拡散および吸着プロセスのメカニズムを介して受動的にサンプリングされます。それらは酸素-無酸素化学プロファイルを記述するのに有用であることが証明されていますが、それらはまだ使い捨てであり、それはそれらのより広い用途を制限します。
最近、マイクロダイアリシス技術は、土壌中の可溶性化合物の動態を数分から11、12、13、14日の時間スケールで監視するために使用できる高感度ツールとして登場しました。医学および環境科学における微小透析を使用する典型的なシナリオでは、半透性管状膜からなる小型の同心型プローブ(すなわち、マイクロダイアライザー)を使用して、間質液または土壌溶液をプローブし、代謝プロセスおよび化学的スペシエーションの重大な障害を防止する15,16。マイクロダイアリシスの最大の本質的な利点の1つは、土壌または生物学的組織における時間依存的な濃度変化のin situキャプチャです15,16。
マイクロ透析のコンセプトに基づき、濃度勾配拡散の原理に基づいて間隙溶質の連続平衡透析を行うことができる、より使いやすいマイクロ透析プロファイラー(以前は統合間隙水注入(IPI)プロファイラーと呼ばれていました2)を開発しました。マイクロダイアリシス装置は、灌流液の能動的プリロードと溶解溶質の受動拡散に中空ナノメンブレンチューブを使用し、ピーパー、Rhizonサンプラーなどの圧力フィルター、および蓄積ベースのDGTで使用されるバルク細孔水拡散とは異なります。この装置は、高地土壌と浸水土壌の両方でカチオン性元素と陰イオン性元素の両方の時間的および空間的サンプリングでテストおよび検証されています(図1A-1)13,15,16。シンプルなポンプインおよびアウトマイクロ透析により、サンプル調製のステップ数が最小限に抑えられます2,15。
我々は、1次元支持骨格上にサンプラーを一体化して微小透析プロファイラーを作製し、土壌-水界面および根圏2,15,17で高分解能サンプリングを実現した。本研究では、下流の元素分析のための外乱を最小限に抑えながら、土壌-水界面(垂直深さ60 mm)で33の間隙水サンプルを収集できるように、サンプリング装置とサンプリング方法を大幅に変更しました。サンプリング手順全体にかかる時間は~15分です。マイクロダイアリシスプロファイラーは環境科学のコミュニティにとって新しいものであるため、土壌-水界面での化学シグナルの変化を監視する上でのマイクロダイアリシスの可能性を示すために、デバイスコンポーネントとサンプリング手順の詳細を提示します。
マイクロダイアリシスプロファイラーの説明
マイクロ透析プロファイラー装置を、以前の設計2を適切に変更して、図1に示します。ナノメンブレンの有効孔径(図1C-1)は、大きな分子や微生物細胞の拡散を防ぐために、わずか数ナノメートルと推定されています。以前の試験では、6ヶ月間の浸水インキュベーションでは、管表面の内側または外側のいずれにも鉄の堆積物は生じないことが示唆された15。湾曲した中空のスケルトンを設計し(図1C-2)、安定したナイロン素材を使用して3Dプリントしました。マッチングポリテトラフルオロエチレン(PTFE)パイプ(長さ:18 cm x 直径2 cm図1C-1)で接続された合計33本のナノメンブレンチューブ(ポリエーテルスルホン、表面孔径:0-20 nm、内径x外径x有効サンプリング長:1.0 mm x 1.7 mm x 54 mm、理論容量:42.4 μL)をスケルトンとPVC容器の片側に設置しました(図1B)。このデバイスの場合、サンプリングコンポーネント(図1B-1)はPVCコンテナの側壁から2cm離れています。注入側(図1B-4)では、すべてのチューブを1対多のコネクタに接続し、緩衝容器に気密に固定しました(図1B-7)。医療用輸液バッグ(図1B-11)を使用して、三方弁で緩衝容器と接続しました。システムの気密性は、さらなる実験操作の前に水中で注意深く調べられました。医療用輸液バッグ内のプリロードされた水(18.2 MΩ、500 mL)は常に無酸素です(図1C-8)。詳細な装置設定と間隙水サンプリングは以下の通りである。
以前の実験と実践2に基づいて、いくつかの考慮事項は、マイクロ透析プロファイラーの組み立てと間隙水のサンプリング中に特別な注意を必要とします。まず、ナノメンブレンチューブと接続チューブを慎重に接続して、接続時の詰まりや漏れを防ぐ必要があります。土壌が浸水条件下でインキュベートされると、酸素の導入は急速に酸化し、透析チューブ内の第一鉄を沈殿させます(図4)。このため、微小透析プロファイラーを組み立てる前に、各微小透析チューブの完全性(損傷なし)、接続部の気密性、およびチューブの開通性を確認する必要があります。同様に、インキュベーション容器の側壁への支持フレームの接続は、漏れを避けるために慎重に行われる必要がある。正式な実験の前に、さまざまな接続場所での漏れチェックが常に優先事項です。第二に、嫌気性バッグ内の灌流液は適切に脱酸素化されなければならない。そうしないと、間隙水中の第一鉄が灌流液中の酸素と反応して不溶性の沈殿物を形成します(図4)。これにより、溶質の種分化と濃度、およびナノメンブレンチューブへの拡散プロセスが大幅に変化します。第三に、サンプリング頻度が低い(数日と数週間)と、溶質がバッファー領域に拡散します。これにより、プロファイルサンプル全体が汚染される可能性があります。この問題に対処するために、3つの可能な解決策を検討することができます:(1)1日1回などの高頻度でのサンプリング(ただし、複数のサンプリングを実行すると、透析サンプラーの近くで溶質が枯渇する可能性があります)。(2)必要に応じて射出領域内の接続管の長さを延長するステップと、(3)サンプリングパイプラインを再設計して、単一のパイプラインの単一制御を実現します。これらは、将来のデバイスの改善の方向性でもあります。第四に、サンプリングプロセス中、水圧のバランスをとるために、嫌気性バッグ、浸水土壌、およびサンプリングパイプ内の水面のレベルがほぼ同じ高さにあることを確認する必要があります。そうしないと、メンブレンチューブの内側と外側の水電位差により、溶質拡散が減少または増加します。
制限
第1に、微小透析プロファイラーは市販されていないため、この方法はデバイスの調製の点で時間がかかるままである。1本の透析チューブを準備するのに、サポートスケルトンの印刷、デバイスの組み立て、クリーニングなど、数日かかりました。しかし、その後の再利用可能な機能は、このギャップを完全に埋めます。第二に、浸水していない土壌シナリオにデバイスを適用することには特定の制限があり、のぞき見は18に使用できます。乾燥土壌ではメンブレンチューブの内側と外側の間に大きな水ポテンシャル差があるため、プリロードされた溶液は拡散損失を経験します。実際、予備試験では10%〜36%の範囲のさまざまなサンプリングボリュームの回復が観察され(詳細なデータは示されていません)、結果について不確実性が生じます。
この方法と既存または代替方法の比較
この方法は、既存のパッシブサンプラーが繰り返しサンプリングできないという事実に部分的に対処し、特に無酸素間隙水のサンプリングと保存のためのサンプル調製の作業負荷を最小限に抑えます2。透析された溶質の濃度とスペシエーションの瞬間的な変化は、あらゆる環境障害に対する酸素-無酸素界面の応答を敏感に反映することができます。理論的には、分、数時間、または数日の頻度でサンプリングすることで、インターフェースで急速に変化するプロセスをキャプチャできます。数日間展開する必要があるパッシブサンプラーの場合、いくつかのホットな瞬間とホットスポットを見逃す可能性があります6,19。
環境科学における重要性と潜在的な応用
このアプローチは、例えば、特定のEh-pH条件下での生物地球化学的プロセスのホットモーメントとホットスポットを見つけるために、酸素-無酸素界面での生物地球化学研究を前進させる可能性があります。酸化還元プロセスは生命活動の基本的なプロセスです1.特に微生物は、最適な生活環境条件を必要とし、環境撹乱に非常に敏感です1。これは、不均一な環境における微生物群集と生物地球化学的プロセスの非常にダイナミックな発展をもたらします20。直接サンプリングは、高い不均一性を考慮することなく、様々な環境条件から混合試料を得る傾向がある。これは、測定された化学情報と主要な微生物20との間にミスマッチを引き起こす。典型的な氾濫水田の土壌または堆積物の表層から数センチメートル以内には、急峻な酸化還元勾配、およびさまざまな物理的、化学的21、および生物学的勾配があります1。テクノロジーは、ミリメートルスケールの生物地球化学的シグナルをキャプチャできなければなりません。そうしないと、実際の縮尺と一致しないデータがあいまいな結論につながる可能性があります。マイクロ透析プロファイラーは、土壌と水の界面でのミリメートルスケールの生化学的シグナルを、最小限の妨害で数日または数時間で監視することができます。本研究では、48時間にわたる異なる元素の時空間ダイナミクスが観察され、おそらく水分補給の乱れに関連している。したがって、マイクロダイアリシスプロファイラーのより広範なアプリケーションは、変化する世界の主要な生物地球化学的プロセスに障害がどのように影響するかを理解するのに役立つ可能性があります。
The authors have nothing to disclose.
この研究は、中国国家自然科学基金会(41977320、41571305)とXJTLUのキープログラム特別基金(KSF-A-20)によって資金提供されています。
3D Printer | Snapmaker, United States | Snapmaker 2.0 | Model: A250 |
3M DP190 Scotch-Weld Gray | 3M United States | 489-483 | Gray |
Centrifuge tube | Titan, China | SWLX-JZ050-ZX | 50 mL, Sterilized DNASE/RNASE/Protease/Pyrogen Free |
Ceramic knife | R felngli, China | N.A. | General |
EDTA FREE ACID | Sigma-Aldrich | CAS 60-00-4 | Sigma-Aldrich#EDS-1KG |
Ethanol | Adamas | CAS 64-17-5 | Water ≤ 50 ppm (by K.F.), 99.5%, SafeDry, with molecular sieves, Safeseal |
Hot melt adhesive | Magic Dragon, China | N.A. | JTWJRRJB001 |
Inductively Coupled Plasma Mass Spectrometry | PerkinElmer, Inc., Shelton, CT USA | N.A. | Model: NexION 350X |
Medical Infusion Bag | Hunan Kanglilai Medical Equipment Co., Ltd | N.A. | 250 Ml, Sterlized |
Milli-Q water system | Mingche, Inc., China | N.A. | 18.3 MΩ, water purification system model: 24UV |
Nanomembrane Tube (polyethersulfone) | Motimo Membrane Technology Co., Ltd., Tianjin, China | N.A. | Polyethersulfone, inner diameter 1 mm, poresize <20 nm, pretreated with ethanol (99.5%) |
Nitrogen gas | Suzhou Gas, Chuina | N.A. | High puriety |
Nitrotic acid (Concentrated) | Adamas | CAS 7697-37-2 | 69%,Single Metal < 50 ppt, PFA Bottle |
Nylon Fiber | Soumiety | 10052076600273 | For 3D-printing |
Pipette | Bond A3 Pipette | N.A. | 200 μL |
Pipette Tip | Titan | T2-H-T0200 | 200 μL, 300 μL Tip Box Non-sterile|200 μL|Titan |
Polytetrafluoroethylene Tube | ROHS, China | CJ-TTL | Out diameter 1 mm |
Sample vial | Titan, China | EP0060-B-N | 0.6 mL, Sterilized DNASE/RNASE/Protease/Pyrogen Free |
Silicon cap | Fuchenxiangsu, China | N.A. | Inner diameter 1 mm, length 1 cm |
Sonicator | Elma | N.A. | model:E120H |
Square PVC water pipe | Taobao.com | N.A. | hight x width, 12 cm x 15 cm |
Three-way valve for infusion | OEM, China | N.A. | Medical level; Valve body: PC material; valve core: PE material; screw cap: ABS material |