Summary

Zeitraffer-Bildgebung neuronaler Arborisation mittels spärlicher adenoassoziierter Virusmarkierung genetisch zielgerichteter Netzhautzellpopulationen

Published: March 19, 2021
doi:

Summary

Hier stellen wir eine Methode zur Untersuchung der Neuritenmorphogenese in postnatalen Maus-Netzhautexplantationen mittels konfokaler Zeitraffinalmikroskopie vor. Wir beschreiben einen Ansatz zur spärlichen Markierung und Erfassung von retinalen Zelltypen und deren Feinprozessen unter Verwendung rekombinanter adenoassoziierter Virusvektoren, die membrangerichtete fluoreszierende Proteine in einer Cre-abhängigen Weise exprimieren.

Abstract

Die Entdeckung von Mechanismen, die dendritische Dornen strukturieren, erfordert Methoden zur Visualisierung, Abbildung und Analyse von Dendriten während der Entwicklung. Die Mausnetzhaut ist ein leistungsfähiges Modellsystem zur Untersuchung zelltypspezifischer Mechanismen der neuronalen Morphogenese und Konnektivität. Die Organisation und Zusammensetzung der retinalen Subtypen ist klar definiert, und genetische Werkzeuge stehen zur Verfügung, um während der Entwicklung auf bestimmte Typen zuzugreifen. Viele retinale Zelltypen beschränken ihre Dendriten und / oder Axone auch auf schmale Schichten, was die Zeitrafferbildgebung erleichtert. Maus-Retina-Explantationskulturen eignen sich gut für die Lebendzellbildgebung mittels konfokaler oder Multiphotonenmikroskopie, aber es fehlen Methoden, die für die Bildgebung der Dendritendynamik mit zeitlicher und struktureller Auflösung optimiert sind. Hier wird eine Methode vorgestellt, um die Entwicklung spezifischer Netzhautpopulationen, die durch das Cre-Lox-System gekennzeichnet sind, spärlich zu markieren und abzubilden. Kommerziell erhältliche Adeno-assoziierte Viren (AAVs), die hier verwendet werden, exprimierten membranzielgerichtete fluoreszierende Proteine in einer Cre-abhängigen Weise. Die intraokulare Verabreichung von AAVs bei neonatalen Mäusen führt zu einer fluoreszierenden Markierung der Zielzelltypen durch 4-5 Tage nach der Injektion (dpi). Die Membranfluoreszenzsignale sind durch konfokale Bildgebung detektierbar und lösen feine Aststrukturen und -dynamiken auf. Hochwertige Videos von 2-4 h werden von bildgebenden retinalen Flatmounts aufgenommen, die mit sauerstoffreicher künstlicher Zerebrospinalflüssigkeit (aCSF) durchblutet sind. Ebenfalls enthalten ist eine Bildnachbearbeitungspipeline zur Dekonvolution und dreidimensionalen (3D) Driftkorrektur. Dieses Protokoll kann verwendet werden, um mehrere zelluläre Verhaltensweisen in der intakten Netzhaut zu erfassen und neue Faktoren zu identifizieren, die die Morphogenese der Neuriten steuern. Viele Entwicklungsstrategien, die in der Netzhaut erlernt werden, werden für das Verständnis der Bildung neuronaler Schaltkreise an anderer Stelle im zentralen Nervensystem relevant sein.

Introduction

Dendriten von Netzhautneuronen bilden komplizierte, aber spezifische Muster, die ihre Funktion innerhalb neuronaler Schaltkreise beeinflussen. In der Netzhaut von Wirbeltieren tragen verschiedene Arten von retinalen Ganglienzellen (RGCs) und Amacrinzell-Interneuronen einzigartige dendritische Morphologien, die sich in Baumgröße, Lage, Astlänge und Dichte unterscheiden1. Während der postnatalen Entwicklung verlängern RGCs und Amacrinzellen überschwängliche dendritische Prozesse in einen Neuropil, der als innere plexiforme Schicht (IPL) bezeichnet wird, wo sie bipolare Zelleingänge empfangen, die Photorezeptorsignale übertragen2. Wie durch Zeitraffer-Bildgebung fluoreszierend markierter Netzhautpopulationen in Küken- oder Zebrafischlarven erfasst, ist die Dendritenmorphogenese hochdynamisch3,4,5. Innerhalb weniger Tage dehnen sich dendritische Lauben aus, remodellieren und verzweigen sich zu engen Unterschichten des IPL, wo sie mit ausgewählten Partnern synapsieren. Die Dornen weisen im Laufe der Entwicklung unterschiedliche strukturelle Dynamiken auf, mit Änderungen der relativen Raten der Zweigaddition, des Rückzugs und der Stabilisierung. Amacrin- und RGC-Dendriten zeigen auch unterschiedliche Auswuchs- und Umbauverhaltensweisen, die eine typspezifische Arborisierung widerspiegeln können. Diese Studien verfolgten jedoch breite amakrine oder RGC-Populationen und konzentrierten sich auf laminares Targeting, das nur ein Aspekt der Morphologie ist.

Die Mechanismen, die die enorme morphologische Vielfalt erzeugen, die bei retinalen Subtypen beobachtet wird, sind kaum verstanden. Ziel dieser Gruppe war es, eine Methode zur Erfassung der Dendritendynamik und des Dornumbaus definierter retinaler Subtypen in Mäusen zu entwickeln. Die Identifizierung zelltypspezifischer Mechanismen der Dendritenmusterung erfordert Methoden zur Visualisierung und Messung des Dendritenverhaltens von Zellen von Interesse. Organotypische Kulturen von Mausretinas eignen sich gut für Lebendzellbildgebungsstudien mit konfokaler oder Multiphotonenmikroskopie. Sich entwickelnde Netzhäute werden seziert und zu einem flachen Explant montiert, das für mehrere Stunden in einer Aufnahmekammer abgebildet oder über einige Tage mit begrenzten Auswirkungen auf die Schaltung kultiviert werden kann6,7. Lebende retinale Neuronen können durch eine Vielzahl von Techniken markiert werden, einschließlich Farbstofffüllung durch Elektroden, Elektroporation, biolistische Abgabe von Partikeln, die mit lipophilen Farbstoffen oder Plasmiden, die für fluoreszierende Proteine (z. B. Gene Gun) beschichtet sind, sowie genetisch kodierte Zellmarkierungen7,8,9,10 . Diese Ansätze sind jedoch ineffizient für die Bildgebung der Dendritendynamik bestimmter retinaler Subtypen. Zum Beispiel sind Farbstofffüllmethoden mit geringem Durchsatz und erfordern elektrophysiologische Geräte und zusätzliche genetische Markierungen, um zuverlässig auf Zellen von Interesse abzuzielen. Darüber hinaus können die starken Fluoreszenzsignale im Soma benachbarte Dendriten verdecken.

Biolistische Genabgabemethoden können gleichzeitig Dutzende von Zellen markieren, aber Schritte, die die Hochdruckpartikelabgabe und die Inkubation isolierter Netzhaut über Nacht beinhalten, können die Zellphysiologie und das dendritische Auswachsen beeinträchtigen. Dieses Papier schlägt vor, dass neuere genetische Werkzeuge eingesetzt werden können, um die frühe Dendritendynamik mit Zelltyp und struktureller Auflösung zu erfassen, wobei die folgenden experimentellen Kriterien berücksichtigt werden. Erstens, um die feinen Zweige und Filopodien aufzulösen, die sich entwickelnde Lauben dominieren, sollte die Methode Neuronen mit hellen, fluoreszierenden Proteinen markieren, die Prozesse in der gesamten Laube füllen. Die Fluoreszenzmarkierung sollte aufgrund von Photobleichen während der Bildgebungsphase nicht verblassen. Eine Vielzahl von fluoreszierenden Proteinvarianten wurde generiert und auf Eignung für in vivo/ex vivo imaging11 basierend auf Helligkeit und Photostabilität verglichen. Zweitens müssen die fluoreszierenden Proteine (XFPs) im frühesten Stadium der Dendritenmorphogenese in ausreichend hohen Mengen exprimiert werden, damit das enge Entwicklungsfenster nicht übersehen wird. Bei Analysen statischer Zeitpunkte in der Netzhaut der Maus tritt die Entwicklung der Dendriten während der ersten postnatalen Woche auf und umfasst Phasen des Auswachsens, des Umbaus und der Stabilisierung10,12,13,14,15. Drittens sollte die Methode zu einer selektiven Markierung oder zu einer erhöhten Wahrscheinlichkeit der Markierung der interessierenden neuronalen Subpopulation führen. Viertens muss die Markierung der Zielsubpopulation ausreichend spärlich sein, damit die gesamte neuronale Laube identifiziert und verfolgt werden kann. Obwohl RGC- und amakrine Subtypen durch ihre reifen morphologischen Eigenschaften und IPL-Schichtungsmuster unterschieden werden können16,17,18,19,20, besteht die Herausforderung darin, Subtypen während der Entwicklung basierend auf unreifen Strukturen zu identifizieren. Diese Aufgabe wird durch die Erweiterung transgener Werkzeuge erleichtert, um bestimmte retinale Zelltypen während der Entwicklung zu markieren.

Transgene und Knock-in-Mauslinien, in denen die zelluläre und zeitliche Expression fluoreszierender Proteine oder Cre durch genregulatorische Elemente bestimmt wird, werden häufig zur Untersuchung von Netzhautzelltypen verwendet13,21,22,23. Wichtige Beobachtungen zu subtypspezifischen Mustern der Dendritenentwicklung stammen aus Studien an transgenen Mausnetzhäuten zu statischen Zeitpunkten10,14,24,25. Insbesondere das Cre-Lox-System ermöglicht eine exquisite Genmanipulation und Überwachung von Subtypen mit einer Vielzahl von rekombinaseabhängigen Reportern, Sensoren und optogenetischen Aktivatoren. Diese Werkzeuge haben zur Entdeckung subtypspezifischer molekularer Programme und funktioneller Eigenschaften geführt, die der retinalen Schaltkreismontage zugrunde liegen26,27,28,29,30. Sie müssen jedoch noch genutzt werden, um die subtypspezifische Dendritendynamik in der Netzhaut der Maus zu untersuchen. Eine Markierung mit geringer Dichte kann durch die Kombination von Cre-Mauslinien mit Transgenen erreicht werden, die durch Elektroporation oder durch rekombinante AAVs eingeführt werden. Falls verfügbar, können auch Tamoxifen-induzierbare Cre-Linien oder intersektionale genetische Strategien verwendet werden. Schließlich sollte die Zelle minimal-invasiv markiert und unter Verwendung von Erfassungsparametern abgebildet werden, um das Gewebe nicht zu beeinträchtigen oder die für die Dendritenmorphogenese erforderliche Zellfunktion zu beeinträchtigen.

Hier wird eine Methode zur Anwendung transgener Werkzeuge und konfokaler Mikroskopie vorgestellt, um die Dendritendynamik in lebenden Netzhautexplantationen von Mäusen zu untersuchen. Cre transgene Mauslinien wurden mit AAV-Vektoren kombiniert, die fluoreszierende Proteine bei Cre-Rekombination exprimieren, was eine spärliche Markierung von Netzhautzellen von Interesse ermöglicht. Kommerziell erhältliche AAVs werden durch intravitreale Injektionen an die neonatale Netzhaut abgegeben. Diese Arbeit zeigt, dass AAVs eine signifikant hohe und zelltypspezifische Fluoreszenzexpression von 4 dpi erzeugen, was den Zugang zu postnatalen Zeitpunkten ermöglicht. Um diesen Ansatz zu veranschaulichen, wurde das cholinerge “Starburst” amacrine Interneuron markiert, indem Brainbow AAV in neonatalen Mäusen verabreicht wurde, die das Cholin-Acetyltransferase (ChAT)-interne Ribosom-Entry-Site (IRES)-Cre-Transgen exprimierten, das in der frühen postnatalen Netzhaut aktiv ist31,32. Starburst-Amakrinzellen entwickeln eine stereotype und radiale Dornmorphologie, die durch die Selbstvermeidung von Dendriten geformt wird, die durch die geclusterten Protocadherine vermittelt wird33,34. Diese Arbeit zeigt, dass die Auflösung von Starburst-Dendriten und Filopodien durch XFPs zur Plasmamembran durch Zugabe des CAAX-Motivs, das einer Farnesylierung unterzogen wird, wie es für den Brainbow AAVs31 verwendet wird, signifikant verbessert wird. Schließlich wurden Zeitraffer-Bildgebungs- und Nachbearbeitungsprotokolle bestimmt, die qualitativ hochwertige Bilder erzeugen, die für die Dendritenrekonstruktion und morphometrische Quantifizierung geeignet sind. Dieses Protokoll kann verwendet werden, um Faktoren zu identifizieren, die die Dendritenmorphogenese kontrollieren, und um mehrere zelluläre Verhaltensweisen in der intakten Netzhaut zu erfassen.

Protocol

HINWEIS: Dieses Protokoll erstreckt sich über 2 Tage mit einem Mindestzeitraum von 4-5 Tagen für die Virustransduktion zwischen den Versuchstagen (Abbildung 1A). Tierversuche werden in Übereinstimmung mit den Richtlinien des Canadian Council on Animal Care für die Verwendung von Tieren in der Forschung und Labortierpflege gemäß Protokollen durchgeführt, die vom Laboratory of Animal Services Animal Use and Care Committee am Hospital for Sick Children (Toronto, Kanada) genehmigt wurden….

Representative Results

Mit dem obigen Protokoll wurde ein hochauflösendes 3D-Video der Entwicklung von Starburst-Zelldendriten aufgenommen, dekonvolviert und für die 3D-Drift korrigiert. Es wurden maximale Projektionen der Z-Ebene erstellt, um 2D-Videos für die Analyse zu erstellen (Ergänzendes Video 1, Abbildung 5A). Die 3D-Dekonvolution jedes Zeitpunkts erhöhte die Auflösung von feinen Filopodienprojektionen (Abbildung 5B,C). Feine Filopodienv…

Discussion

Dieses Video zeigt eine experimentelle Pipeline, die vorhandene genetische Werkzeuge nutzt, um die Dendritendynamik der sich entwickelnden Netzhautneuronen mit konfokaler Live-Bildgebung abzubilden. Gezeigt werden auch intraokulare Injektionen von Cre-abhängigen AAVs, die membrangerichtete fluoreszierende Proteine in neonatale Mäuse kodieren. Einzelzellen genetisch zielgerichteter Populationen sind bereits mit 4-5 dpi hell markiert. Retinale flache Montierungen wurden für Standard-Bildgebungskammern vorbereitet, um ko…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Wir danken Madison Gray, dass sie mir geholfen hat, als ich keine hatte. Diese Forschung wurde durch einen NSERC Discovery Grant (RGPIN-2016-06128), ein Sloan Fellowship in Neuroscience und einen Canada Research Chair Tier 2 (an J.L.L.) unterstützt. S. Ing-Esteves wurde durch das Vision Science Research Program und NSERC Postgraduate Scholarships-Doctoral unterstützt.

Materials

Addgene viral prep #45185-AAV9
Addgene viral prep #45186-AAV9
Dissection tools
Cellulose filter paper Whatman 1001-070
Dumont #5 fine forceps FST 11252-20 Two Dumont #5 forceps are required for retinal micro-dissection
Dumont forceps VWR 82027-426
Fine Scissors FST 14058-09
Mixed cellulose ester membrane (MCE) filter papers, hydrophilic, 0.45 µm pore size Millipore HABG01 300
Petri Dish, 50 × 15 mm VWR 470313-352
Polyethylene disposable transfer pipette VWR 470225-034
Round tip paint brush, size 3/0 Conventional art supply store Two size 3/0 paint brushes (or smaller) are required for retinal flat-mounting
Surgical Scissors FST 14007-14
Vannas Spring Scissors – 2.5 mm Cutting Edge FST 15000-08
Live-imaging incubation system
Chamber polyethylene tubing, PE-160 10' Warner Instruments 64-0755
Dual channel heater controller, Model TC-344C Warner Instruments 64-2401
HC FLUOTAR L 25x/0.95 W VISIR dipping objective Leica 15506374
Heater controller cable Warner Instruments CC-28
Large bath incubation chamber with slice support Warner Instruments RC-27L
MPII Mini-Peristaltic Pump Harvard Apparatus 70-2027
PM-6D Magnetic Heated Platform (incubation chamber heater) Warner Instruments PM-6D
Pump Head Tubing Pieces For MPII Mini-Peristaltic Pump Harvard Apparatus 55-4148
Sample anchor (Harps) Warner Instruments 64-0260 Sample anchor must be compatible with incubation chamber
Sloflo In-line Solution Heater Warner Instruments SF-28
Neonatal Injections
10 µL Microliter Syringe Series 700, Removable Needle Hamilton Company 80314
30 G Hypodermic Needles (0.5 inch) BD PrecisionGlide 305106
4 inch thinwall glass capillary, no filament (1.0 mm outer diameter/0.75 mm)  WPI World Precision Instruments TW100-4
Ethanol 99.8% (to dilute to 70% with double-distilled water [ddH2O]) Sigma-Aldrich V001229 
AAV9.hEF1a.lox.TagBFP. lox.eYFP.lox.WPRE.hGH-InvBYF Penn Vector Core AV-9-PV2453 Addgene Plasmid #45185 
AAV9.hEF1a.lox.mCherry.lox.mTFP
1.lox.WPRE.hGH-InvCheTF
Penn Vector Core AV-9-PV2454 Addgene Plasmid #45186
ChAT-IRES-Cre knock-in transgenic mouse line The Jackson Laboratory 6410
Fast Green FCF Dye content ≥85 % Sigma-Aldrich F7252-25G
Flaming/Brown Micropipette Puller, model P-97 Sutter Instrument Co. P-97
Green tattoo paste Ketchum MFG Co 329A
Phosphate-Buffered Saline, pH 7.4, liquid, sterile-filtered, suitable for cell culture Sigma-Aldrich 806552
Pneumatic PicoPump WPI World Precision Instruments PV-820
Oxygenated artifiial cerebrospinal fluid (aCSF) Reagents
Calcium chloride dihydrate (CaCl2·2H2O) Sigma-Aldrich C7902
Carbogen (5% CO2, 95% O2) AirGas X02OX95C2003102 Supplier may vary depending on region
D-(+)-Glucose Sigma-Aldrich G7021
HEPES, Free Acid Bio Basic HB0264
Hydrochloric acid solution, 1 N Sigma-Aldrich H9892
Magnesium chloride hexahydrate (MgCl2·6H2O) Sigma-Aldrich M2670
pH-Test strips (6.0-7.7) VWR BDH35317.604
Potassium chloride (KCl) Sigma-Aldrich P9541
Sodium chloride (NaCl) Bio Basic DB0483
Sodium phosphate monobasic (NaH2PO4) Sigma-Aldrich RDD007
Software
ImageJ National Institutes of Health (NIH) Open source

References

  1. Lefebvre, J. L., Sanes, J. R., Kay, J. N. Development of dendritic form and function. Annual Review of Cell and Developmental Biology. 31, 741-777 (2015).
  2. Graham, H. K., Duan, X. Molecular mechanisms regulating synaptic specificity and retinal circuit formation. Wiley Interdisciplinary Reviews Developmental biology. 10 (1), 379 (2021).
  3. Godinho, L., et al. Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina. Development. 132 (22), 5069-5079 (2005).
  4. Mumm, J. S., et al. In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron. 52 (4), 609-621 (2006).
  5. Wong, W. T., Faulkner-Jones, B. E., Sanes, J. R., Wong, R. O. Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. The Journal of Neuroscience. 20 (13), 5024-5036 (2000).
  6. Wei, W., Elstrott, J., Feller, M. B. Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina. Nature Protocols. 5 (7), 1347-1352 (2010).
  7. Morgan, J. L., Wong, R. O. L. Ballistic labeling with fluorescent dyes and indicators. Current Protocols in Neuroscience. 43 (1), 1-10 (2008).
  8. Nickerson, P. E. B., et al. Live imaging and analysis of postnatal mouse retinal development. BMC Developmental Biology. 13, 24 (2013).
  9. Morgan, J. L., Dhingra, A., Vardi, N., Wong, R. O. L. Axons and dendrites originate from neuroepithelial-like processes of retinal bipolar cells. Nature Neuroscience. 9 (1), 85-92 (2006).
  10. Coombs, J. L., Van Der List, D., Chalupa, L. M. Morphological properties of mouse retinal ganglion cells during postnatal development. The Journal of Comparative Neurology. 503 (6), 803-814 (2007).
  11. Cranfill, P. J., et al. Quantitative assessment of fluorescent proteins. Nature Methods. 13 (7), 557-562 (2016).
  12. Stacy, R. C., Wong, R. O. L. Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina. The Journal of Comparative Neurology. 456 (2), 154-166 (2003).
  13. Kay, J. N., et al. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. The Journal of Neuroscience. 31 (21), 7753-7762 (2011).
  14. Liu, J., Sanes, J. R. Cellular and molecular analysis of dendritic morphogenesis in a retinal cell type that senses color contrast and ventral motion. The Journal of Neuroscience. 37 (50), 12247-12262 (2017).
  15. Diao, L., Sun, W., Deng, Q., He, S. Development of the mouse retina: emerging morphological diversity of the ganglion cells. Journal of Neurobiology. 61 (2), 236-249 (2004).
  16. Coombs, J., vander List, D., Wang, G. Y., Chalupa, L. M. Morphological properties of mouse retinal ganglion cells. Neuroscience. 140 (1), 123-136 (2006).
  17. Sanes, J. R., Masland, R. H. The types of retinal ganglion cells: current status and implications for neuronal classification. Annual Review of Neuroscience. 38, 221-246 (2015).
  18. Sümbül, U., et al. A genetic and computational approach to structurally classify neuronal types. Nature Communications. 5, 3512 (2014).
  19. Lin, B., Masland, R. H. Populations of wide-field amacrine cells in the mouse retina. The Journal of Comparative Neurology. 499 (5), 797-809 (2006).
  20. Macneil, M. A., Heussy, J. K., Dacheux, R. F., Raviola, E., Masland, R. H. The shapes and numbers of amacrine cells: Matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. Journal of Comparative Neurology. 413 (2), 305-326 (1999).
  21. Ivanova, E., Hwang, G. S., Pan, Z. H. Characterization of transgenic mouse lines expressing Cre recombinase in the retina. Neuroscience. 165 (1), 233-243 (2010).
  22. Jo, A., Xu, J., Deniz, S., Cherian, S., DeVries, S. H., Zhu, Y. Intersectional strategies for targeting amacrine and ganglion cell types in the mouse retina. Frontiers in Neural Circuits. 12, 66 (2018).
  23. Siegert, S., et al. Genetic address book for retinal cell types. Nature Neuroscience. 12 (9), 1197-1204 (2009).
  24. Kim, I. -. J., Zhang, Y., Meister, M., Sanes, J. R. Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers. The Journal of Neuroscience. 30 (4), 1452-1462 (2010).
  25. Peng, Y. -. R., Tran, N. M., Krishnaswamy, A., Kostadinov, D., Martersteck, E. M., Sanes, J. R. Satb1 regulates contactin 5 to pattern dendrites of a mammalian retinal ganglion cell. Neuron. 95 (4), 869-883 (2017).
  26. Duan, X., Krishnaswamy, A., Dela Huerta, I., Sanes, J. R. Type II cadherins guide assembly of a direction-selective retinal circuit. Cell. 158 (4), 793-807 (2014).
  27. Ray, T. A., et al. Formation of retinal direction-selective circuitry initiated by starburst amacrine cell homotypic contact. eLife. 7, 34241 (2018).
  28. Krishnaswamy, A., Yamagata, M., Duan, X., Hong, Y. K., Sanes, J. R. Sidekick 2 directs formation of a retinal circuit that detects differential motion. Nature. 524 (7566), 466-470 (2015).
  29. Caval-Holme, F., Zhang, Y., Feller, M. B. Gap junction coupling shapes the encoding of light in the developing retina. Current Biology. 29 (23), 4024-4035 (2019).
  30. Lucas, J. A., Schmidt, T. M. Cellular properties of intrinsically photosensitive retinal ganglion cells during postnatal development. Neural Development. 14 (1), 8 (2019).
  31. Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W., Sanes, J. R. Improved tools for the Brainbow toolbox. Nature Methods. 10 (6), 540-547 (2013).
  32. Rossi, J., et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metabolism. 13 (2), 195-204 (2011).
  33. Lefebvre, J. L., Kostadinov, D., Chen, W. V., Maniatis, T., Sanes, J. R. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature. 488 (7412), 517-521 (2012).
  34. Ing-Esteves, S., et al. Combinatorial effects of alpha- and gamma-protocadherins on neuronal survival and dendritic self-avoidance. The Journal of Neuroscience. 38 (11), 2713-2729 (2018).
  35. Williams, P. R., Morgan, J. L., Kerschensteiner, D., Wong, R. O. L. In vitro imaging of retinal whole mounts. Cold Spring Harbor Protocols. 2013 (1), (2013).
  36. Ramoa, A. S., Campbell, G., Shatz, C. J. Transient morphological features of identified ganglion cells in living fetal and neonatal retina. Science. 237 (4814), 522-525 (1987).
  37. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9, 676-682 (2012).
  38. Peng, H., Ruan, Z., Long, F., Simpson, J. H., Myers, E. W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology. 28 (4), 348-353 (2010).
  39. Cuntz, H., Forstner, F., Borst, A., Häusser, M. One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Computational Biology. 6 (8), 1000877 (2010).
  40. Xiao, H., Peng, H. APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics. 29 (11), 1448-1454 (2013).
  41. Nanda, S., et al. Design and implementation of multi-signal and time-varying neural reconstructions. Scientific data. 5, 170207 (2018).
  42. Sherry, D. M., Wang, M. M., Bates, J., Frishman, L. J. Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits. The Journal of Comparative Neurology. 465 (4), 480-498 (2003).
  43. Johnson, J., et al. Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: GABA and glycine precede glutamate. The Journal of Neuroscience. 23 (2), 518-529 (2003).
  44. Jüttner, J., et al. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nature Neuroscience. 22 (8), 1345-1356 (2019).
  45. Zincarelli, C., Soltys, S., Rengo, G., Rabinowitz, J. E. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Molecular Therapy. 16 (6), 1073-1080 (2008).
  46. Petros, T. J., Rebsam, A., Mason, C. A. In utero and ex vivo electroporation for gene expression in mouse retinal ganglion cells. Journal of Visualized Experiments: JoVE. (31), e1333 (2009).
  47. Lye, M. H., Jakobs, T. C., Masland, R. H., Koizumi, A. Organotypic culture of adult rabbit retina. Journal of Visualized Experiments: JoVE. (3), e190 (2007).
  48. Pignatelli, V., Strettoi, E. Bipolar cells of the mouse retina: a gene gun, morphological study. The Journal of Comparative Neurology. 476 (3), 254-266 (2004).
  49. Huckfeldt, R. M., et al. Transient neurites of retinal horizontal cells exhibit columnar tiling via homotypic interactions. Nature Neuroscience. 12 (1), 35-43 (2009).
  50. Prahst, C., et al. Mouse retinal cell behaviour in space and time using light sheet fluorescence microscopy. eLife. 9, 49779 (2020).

Play Video

Cite This Article
Ing-Esteves, S., Lefebvre, J. L. Time-Lapse Imaging of Neuronal Arborization using Sparse Adeno-Associated Virus Labeling of Genetically Targeted Retinal Cell Populations. J. Vis. Exp. (169), e62308, doi:10.3791/62308 (2021).

View Video