Summary

Imagem de lapso de tempo da arborização neuronal usando rotulagem de vírus associado adeno esparsa de populações de células de retina geneticamente direcionadas

Published: March 19, 2021
doi:

Summary

Aqui, apresentamos um método para investigar morfogênese neurita em explantes de retina de camundongos pós-natal por microscopia confocal de lapso de tempo. Descrevemos uma abordagem para rotulagem e aquisição esparsa de tipos de células da retina e seus processos finos usando vetores de vírus associados a adeno recombinantes que expressam proteínas fluorescentes direcionadas à membrana de forma dependente de Cre.

Abstract

Descobrir mecanismos que padronizam as arboris dendríticas requer métodos para visualizar, imagem e analisar dendritos durante o desenvolvimento. A retina do rato é um poderoso sistema modelo para a investigação de mecanismos específicos do tipo celular de morfogênese neuronal e conectividade. A organização e a composição dos subtipos da retina estão bem definidas, e ferramentas genéticas estão disponíveis para acessar tipos específicos durante o desenvolvimento. Muitos tipos de células de retina também restringem seus dendritos e/ou axônios a camadas estreitas, o que facilita a imagem de lapso de tempo. As culturas de explant da retina do rato são adequadas para imagens de células vivas usando microscopia confocal ou multifotônio, mas métodos otimizados para dinâmica de dendrite de imagem com resolução temporal e estrutural são carentes. Apresentado aqui é um método para rotular e imaginar escassamente o desenvolvimento de populações específicas de retina marcadas pelo sistema Cre-Lox. Vírus associados a adeno (AAVs) comercialmente disponíveis (AAVs) usados aqui expressavam proteínas fluorescentes direcionadas à membrana de forma dependente de Cre. A entrega intraocular de AAVs em camundongos neonatais produz rotulagem fluorescente de tipos de células-alvo por 4-5 dias após a injeção (dpi). Os sinais fluorescentes de membrana são detectáveis por imagens confocal e resolvem estruturas e dinâmicas finas do ramo. Vídeos de alta qualidade que abrangem 2-4 h são adquiridos a partir de imagens de montagem plana de retina perfumadas com fluido cerebrospinal artificial oxigenado (aCSF). Também é fornecido um pipeline de pós-processamento de imagem para desconvolução e correção de deriva tridimensional (3D). Este protocolo pode ser usado para capturar vários comportamentos celulares na retina intacta e identificar novos fatores que controlam a morfogênese neurita. Muitas estratégias de desenvolvimento aprendidas na retina serão relevantes para a compreensão da formação de circuitos neurais em outros lugares do sistema nervoso central.

Introduction

Dendritos de neurônios da retina formam padrões intrincados, mas específicos, que influenciam sua função dentro de circuitos neurais. Na retina vertebrada, diversos tipos de células gânglios da retina (RGCs) e interneurônios de células amacrinas possuem morfologias dendríticas únicas que diferem em tamanho, localização, comprimento do ramo e densidade1. Durante o desenvolvimento pós-natal, RGCs e células amacrinas estendem processos dendráticos exuberantes em um neuropiloto chamado camada plexiforme interna (IPL), onde recebem entradas de células bipolares transmitindo sinais fotorreceptores2. Como capturado por imagens de lapso de tempo de populações de retina fluorescentes rotuladas em larvas de filhotes ou zebrafish, a morfogênese dendrite é altamente dinâmica3,4,5. Em poucos dias, as arbóreas dendríticas expandem, remodelam e ramificam para subcamadas estreitas do IPL, onde sinapse com parceiros selecionados. As arbors apresentam dinâmicas estruturais diferentes sobre o desenvolvimento, com alterações nas taxas relativas de adição de filiais, retração e estabilização. Os dendritos amacrinos e RGC também apresentam diferentes comportamentos de crescimento e remodelação que podem refletir arborização específica do tipo. No entanto, esses estudos acompanharam populações de amacrinas ou RGC amplas e se concentraram na segmentação laminar, que é apenas um aspecto da morfologia.

Os mecanismos que produzem a vasta diversidade morfológica observada entre os subtipos da retina são mal compreendidos. O objetivo deste grupo foi desenvolver um método para capturar a dinâmica dendrite e a remodelação de arbor de subtipos de retina definidos em camundongos. Identificar mecanismos específicos do tipo celular de padronização de dendrite requer métodos para visualizar e medir comportamentos dendrite de células de interesse. Culturas organotípicas de retinas de camundongos são adequadas para estudos de imagem de células vivas usando microscopia confocal ou multifotífera. Retinas em desenvolvimento são dissecadas e montadas em uma explanta plana que pode ser imageda por várias horas em uma câmara de gravação ou cultivada ao longo de alguns dias com efeitos limitados no circuito6,7. Os neurônios de retina ao vivo podem ser rotulados por uma variedade de técnicas, incluindo preenchimento de corante por eletrodos, eletroporação, entrega biolística de partículas revestidas com corantes lipofílicos ou plasmídeos codificando proteínas fluorescentes (por exemplo, Gene Gun), bem como rótulos de células geneticamente codificadas7,8, 9,10 . No entanto, essas abordagens são ineficientes para a dinâmica de dendrite de imagem de subtipos específicos da retina. Por exemplo, os métodos de enchimento de corantes são de baixa produtividade e requerem aparelhos de eletrofisiologia e rótulos genéticos adicionais para direcionar de forma confiável células de interesse. Além disso, os fortes sinais de fluorescência na soma podem obscurecer dendritos próximos.

Métodos de entrega de genes biolísticos podem simultaneamente rotular dezenas de células, mas etapas que envolvem a entrega de partículas de alta pressão e a incubação noturna de retina isolada podem comprometer a fisiologia celular e o crescimento dendrático. Este artigo propõe que ferramentas genéticas recentes podem ser empregadas para capturar dinâmicas dendrita precoces com tipo celular e resolução estrutural, dados os seguintes critérios experimentais. Primeiro, para resolver os ramos finos e filopodia que dominam as árvores em desenvolvimento, o método deve rotular neurônios com proteínas brilhantes e fluorescentes que preenchem processos em toda a arbor. A rotulagem de fluorescência não deve desaparecer devido ao fotobleaching durante o período de imagem. Uma variedade de variantes de proteína fluorescente foram geradas e comparadas para adequação para imagens in vivo/ex vivo11 baseadas em brilho e fotoestabilidade. Em segundo lugar, as proteínas fluorescentes (XFPs) devem ser expressas em níveis suficientemente altos pelo estágio inicial da morfogênese dendrite, de modo que a estreita janela de desenvolvimento não seja perdida. Em análises de pontos de tempo estáticos na retina do camundongo, o desenvolvimento do dendrite ocorre durante a primeira semana pós-natal e inclui fases de crescimento, remodelação e estabilização10,12,13,14,15. Em terceiro lugar, o método deve levar à rotulagem seletiva ou a uma maior probabilidade de rotulagem da subpopulação neuronal de interesse. Em quarto lugar, a rotulagem da subpopulação alvo deve ser suficientemente escassa para que toda a árvore neuronal possa ser identificada e rastreada. Embora os subtipos de RGC e amacrine possam ser distinguidos por suas características morfológicas maduras e padrões de estratificação de IPL16,17,18,19,20, o desafio é identificar subtipos durante o desenvolvimento com base em estruturas imaturas. Essa tarefa é facilitada pela expansão de ferramentas transgênicas para rotular tipos específicos de células da retina durante o desenvolvimento.

Linhas transgênicas e de camundongos em que a expressão celular e temporal de proteínas fluorescentes ou Cre é determinada por elementos regulatórios genéticos são amplamente utilizadas para estudar os tipos de células da retina13,21,22,23. Observações-chave sobre padrões específicos de desenvolvimento de dendrítos de subtipo vieram de estudos de retinas de camundongos transgênicos em momentos estáticos10,14,24,25. O sistema Cre-Lox, em particular, permite a manipulação genética requintada e o monitoramento de subtipos usando uma variedade de repórteres, sensores e ativadores optogenéticos dependentes de recombinase. Essas ferramentas levaram a descobertas de programas moleculares específicos do subtipo e propriedades funcionais que estão por trás do conjunto do circuito de retina26,27,28,29,30. No entanto, eles ainda não foram aproveitados para estudar a dinâmica dendrite específica do subtipo na retina do rato. A rotulagem de baixa densidade pode ser alcançada combinando linhas de mouse Cre com transgênicos introduzidos por eletroporação ou por AAVs recombinantes. Se disponível, linhas cre indutíveis de tamoxifen ou estratégias genéticas interseccionais também podem ser usadas. Finalmente, a célula deve ser rotulada de forma minimamente invasiva e imageada usando parâmetros de aquisição para não comprometer o tecido ou interferir com a função celular necessária para morfogênese dendrita.

Apresentado aqui é um método para aplicar ferramentas transgênicas e microscopia confocal para investigar a dinâmica do dendrite em explants de retina de rato vivo. Linhas de camundongos transgênicos cre foram combinadas com vetores AAV que expressam proteínas fluorescentes após a recombinação de Cre, o que permite rotulagem esparsa de células de interesse da retina. As AAVs disponíveis comercialmente são entregues à retina neonatal por injeções intravitreal. Este artigo demonstra que os AAVs produzem expressões fluorescentes significativamente altas e específicas do tipo celular por 4 dpi, permitindo o acesso aos pontos de tempo pós-natal. Para ilustrar essa abordagem, o interneuron amacrina “starburst” cholinergic “starburst” foi rotulado pela entrega de Brainbow AAV em camundongos neonatais expressando o site de entrada de acetiltransferase de colina (ChAT)-internal ribosome (IRES)-Cre transgene, que está ativo na retina pós-natal inicial31,32. As células amacrinas starburst desenvolvem uma morfologia arbórea estereotipada e radial que é moldada pela auto-evasão dendrite mediada pelas protocadherinas agrupadas33,34. Este artigo mostra que a resolução de dendritos e filopodia de starburst é significativamente melhorada pelos XFPs para a membrana plasmática com a adição do motivo CAAX que sofre farnesylation, como usado para o Brainbow AAVs31. Finalmente, foram determinados protocolos de imagem e pós-processamento de lapso de tempo que produzem imagens de alta qualidade para reconstrução dendrito e quantificação morfométrica. Este protocolo pode ser usado para identificar fatores que controlam a morfogênese dendrita e para capturar vários comportamentos celulares na retina intacta.

Protocol

NOTA: Este protocolo abrange 2 dias com um período mínimo de 4 a 5 dias para transdução viral entre dias experimentais (Figura 1A). Os experimentos em animais são realizados de acordo com o Conselho Canadense de Diretrizes de Cuidados com Animais para Uso de Animais em Pesquisa e Cuidados Com Animais de Laboratório sob protocolos aprovados pelo Comitê de Uso e Cuidado animal do Laboratório de Serviços Animais do Hospital para Crianças Doentes (Toronto, Canadá). <p class="jove_…

Representative Results

Usando o protocolo acima, um vídeo 3D de alta resolução de dendritos de células de explosão estelar em desenvolvimento foi adquirido, desconvolved e corrigido para deriva 3D. Foram produzidas projeções máximas de plano Z para fazer vídeos 2D para análise (Vídeo Suplementar 1, Figura 5A). A desconvolução 3D de cada ponto de tempo aumentou a resolução de projeções finas de filopodia (Figura 5B,C). Saliências fina…

Discussion

Este vídeo demonstra um pipeline experimental que utiliza ferramentas genéticas existentes para a dinâmica dendrite de imagem do desenvolvimento de neurônios da retina com imagens ao vivo confocal. Também são demonstradas injeções intraoculares de AAVs dependentes de Cre codificando proteínas fluorescentes direcionadas à membrana em camundongos neonatais. Células únicas de populações geneticamente direcionadas são brilhantemente rotuladas tão cedo quanto 4-5 dpi. Os suportes planos de retina foram prepara…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Agradecemos a Madison Gray por me ajudar quando eu não tinha nenhuma. Esta pesquisa foi apoiada por um NSERC Discovery Grant (RGPIN-2016-06128), uma Sloan Fellowship in Neuroscience e uma Cadeira de Pesquisa do Canadá Nível 2 (para J.L.L). S. Ing-Esteves foi apoiado pelo Vision Science Research Program e NSERC Postgraduate Scholarships-Doctoral.

Materials

Addgene viral prep #45185-AAV9
Addgene viral prep #45186-AAV9
Dissection tools
Cellulose filter paper Whatman 1001-070
Dumont #5 fine forceps FST 11252-20 Two Dumont #5 forceps are required for retinal micro-dissection
Dumont forceps VWR 82027-426
Fine Scissors FST 14058-09
Mixed cellulose ester membrane (MCE) filter papers, hydrophilic, 0.45 µm pore size Millipore HABG01 300
Petri Dish, 50 × 15 mm VWR 470313-352
Polyethylene disposable transfer pipette VWR 470225-034
Round tip paint brush, size 3/0 Conventional art supply store Two size 3/0 paint brushes (or smaller) are required for retinal flat-mounting
Surgical Scissors FST 14007-14
Vannas Spring Scissors – 2.5 mm Cutting Edge FST 15000-08
Live-imaging incubation system
Chamber polyethylene tubing, PE-160 10' Warner Instruments 64-0755
Dual channel heater controller, Model TC-344C Warner Instruments 64-2401
HC FLUOTAR L 25x/0.95 W VISIR dipping objective Leica 15506374
Heater controller cable Warner Instruments CC-28
Large bath incubation chamber with slice support Warner Instruments RC-27L
MPII Mini-Peristaltic Pump Harvard Apparatus 70-2027
PM-6D Magnetic Heated Platform (incubation chamber heater) Warner Instruments PM-6D
Pump Head Tubing Pieces For MPII Mini-Peristaltic Pump Harvard Apparatus 55-4148
Sample anchor (Harps) Warner Instruments 64-0260 Sample anchor must be compatible with incubation chamber
Sloflo In-line Solution Heater Warner Instruments SF-28
Neonatal Injections
10 µL Microliter Syringe Series 700, Removable Needle Hamilton Company 80314
30 G Hypodermic Needles (0.5 inch) BD PrecisionGlide 305106
4 inch thinwall glass capillary, no filament (1.0 mm outer diameter/0.75 mm)  WPI World Precision Instruments TW100-4
Ethanol 99.8% (to dilute to 70% with double-distilled water [ddH2O]) Sigma-Aldrich V001229 
AAV9.hEF1a.lox.TagBFP. lox.eYFP.lox.WPRE.hGH-InvBYF Penn Vector Core AV-9-PV2453 Addgene Plasmid #45185 
AAV9.hEF1a.lox.mCherry.lox.mTFP
1.lox.WPRE.hGH-InvCheTF
Penn Vector Core AV-9-PV2454 Addgene Plasmid #45186
ChAT-IRES-Cre knock-in transgenic mouse line The Jackson Laboratory 6410
Fast Green FCF Dye content ≥85 % Sigma-Aldrich F7252-25G
Flaming/Brown Micropipette Puller, model P-97 Sutter Instrument Co. P-97
Green tattoo paste Ketchum MFG Co 329A
Phosphate-Buffered Saline, pH 7.4, liquid, sterile-filtered, suitable for cell culture Sigma-Aldrich 806552
Pneumatic PicoPump WPI World Precision Instruments PV-820
Oxygenated artifiial cerebrospinal fluid (aCSF) Reagents
Calcium chloride dihydrate (CaCl2·2H2O) Sigma-Aldrich C7902
Carbogen (5% CO2, 95% O2) AirGas X02OX95C2003102 Supplier may vary depending on region
D-(+)-Glucose Sigma-Aldrich G7021
HEPES, Free Acid Bio Basic HB0264
Hydrochloric acid solution, 1 N Sigma-Aldrich H9892
Magnesium chloride hexahydrate (MgCl2·6H2O) Sigma-Aldrich M2670
pH-Test strips (6.0-7.7) VWR BDH35317.604
Potassium chloride (KCl) Sigma-Aldrich P9541
Sodium chloride (NaCl) Bio Basic DB0483
Sodium phosphate monobasic (NaH2PO4) Sigma-Aldrich RDD007
Software
ImageJ National Institutes of Health (NIH) Open source

References

  1. Lefebvre, J. L., Sanes, J. R., Kay, J. N. Development of dendritic form and function. Annual Review of Cell and Developmental Biology. 31, 741-777 (2015).
  2. Graham, H. K., Duan, X. Molecular mechanisms regulating synaptic specificity and retinal circuit formation. Wiley Interdisciplinary Reviews Developmental biology. 10 (1), 379 (2021).
  3. Godinho, L., et al. Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina. Development. 132 (22), 5069-5079 (2005).
  4. Mumm, J. S., et al. In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron. 52 (4), 609-621 (2006).
  5. Wong, W. T., Faulkner-Jones, B. E., Sanes, J. R., Wong, R. O. Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. The Journal of Neuroscience. 20 (13), 5024-5036 (2000).
  6. Wei, W., Elstrott, J., Feller, M. B. Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina. Nature Protocols. 5 (7), 1347-1352 (2010).
  7. Morgan, J. L., Wong, R. O. L. Ballistic labeling with fluorescent dyes and indicators. Current Protocols in Neuroscience. 43 (1), 1-10 (2008).
  8. Nickerson, P. E. B., et al. Live imaging and analysis of postnatal mouse retinal development. BMC Developmental Biology. 13, 24 (2013).
  9. Morgan, J. L., Dhingra, A., Vardi, N., Wong, R. O. L. Axons and dendrites originate from neuroepithelial-like processes of retinal bipolar cells. Nature Neuroscience. 9 (1), 85-92 (2006).
  10. Coombs, J. L., Van Der List, D., Chalupa, L. M. Morphological properties of mouse retinal ganglion cells during postnatal development. The Journal of Comparative Neurology. 503 (6), 803-814 (2007).
  11. Cranfill, P. J., et al. Quantitative assessment of fluorescent proteins. Nature Methods. 13 (7), 557-562 (2016).
  12. Stacy, R. C., Wong, R. O. L. Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina. The Journal of Comparative Neurology. 456 (2), 154-166 (2003).
  13. Kay, J. N., et al. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. The Journal of Neuroscience. 31 (21), 7753-7762 (2011).
  14. Liu, J., Sanes, J. R. Cellular and molecular analysis of dendritic morphogenesis in a retinal cell type that senses color contrast and ventral motion. The Journal of Neuroscience. 37 (50), 12247-12262 (2017).
  15. Diao, L., Sun, W., Deng, Q., He, S. Development of the mouse retina: emerging morphological diversity of the ganglion cells. Journal of Neurobiology. 61 (2), 236-249 (2004).
  16. Coombs, J., vander List, D., Wang, G. Y., Chalupa, L. M. Morphological properties of mouse retinal ganglion cells. Neuroscience. 140 (1), 123-136 (2006).
  17. Sanes, J. R., Masland, R. H. The types of retinal ganglion cells: current status and implications for neuronal classification. Annual Review of Neuroscience. 38, 221-246 (2015).
  18. Sümbül, U., et al. A genetic and computational approach to structurally classify neuronal types. Nature Communications. 5, 3512 (2014).
  19. Lin, B., Masland, R. H. Populations of wide-field amacrine cells in the mouse retina. The Journal of Comparative Neurology. 499 (5), 797-809 (2006).
  20. Macneil, M. A., Heussy, J. K., Dacheux, R. F., Raviola, E., Masland, R. H. The shapes and numbers of amacrine cells: Matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. Journal of Comparative Neurology. 413 (2), 305-326 (1999).
  21. Ivanova, E., Hwang, G. S., Pan, Z. H. Characterization of transgenic mouse lines expressing Cre recombinase in the retina. Neuroscience. 165 (1), 233-243 (2010).
  22. Jo, A., Xu, J., Deniz, S., Cherian, S., DeVries, S. H., Zhu, Y. Intersectional strategies for targeting amacrine and ganglion cell types in the mouse retina. Frontiers in Neural Circuits. 12, 66 (2018).
  23. Siegert, S., et al. Genetic address book for retinal cell types. Nature Neuroscience. 12 (9), 1197-1204 (2009).
  24. Kim, I. -. J., Zhang, Y., Meister, M., Sanes, J. R. Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers. The Journal of Neuroscience. 30 (4), 1452-1462 (2010).
  25. Peng, Y. -. R., Tran, N. M., Krishnaswamy, A., Kostadinov, D., Martersteck, E. M., Sanes, J. R. Satb1 regulates contactin 5 to pattern dendrites of a mammalian retinal ganglion cell. Neuron. 95 (4), 869-883 (2017).
  26. Duan, X., Krishnaswamy, A., Dela Huerta, I., Sanes, J. R. Type II cadherins guide assembly of a direction-selective retinal circuit. Cell. 158 (4), 793-807 (2014).
  27. Ray, T. A., et al. Formation of retinal direction-selective circuitry initiated by starburst amacrine cell homotypic contact. eLife. 7, 34241 (2018).
  28. Krishnaswamy, A., Yamagata, M., Duan, X., Hong, Y. K., Sanes, J. R. Sidekick 2 directs formation of a retinal circuit that detects differential motion. Nature. 524 (7566), 466-470 (2015).
  29. Caval-Holme, F., Zhang, Y., Feller, M. B. Gap junction coupling shapes the encoding of light in the developing retina. Current Biology. 29 (23), 4024-4035 (2019).
  30. Lucas, J. A., Schmidt, T. M. Cellular properties of intrinsically photosensitive retinal ganglion cells during postnatal development. Neural Development. 14 (1), 8 (2019).
  31. Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W., Sanes, J. R. Improved tools for the Brainbow toolbox. Nature Methods. 10 (6), 540-547 (2013).
  32. Rossi, J., et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metabolism. 13 (2), 195-204 (2011).
  33. Lefebvre, J. L., Kostadinov, D., Chen, W. V., Maniatis, T., Sanes, J. R. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature. 488 (7412), 517-521 (2012).
  34. Ing-Esteves, S., et al. Combinatorial effects of alpha- and gamma-protocadherins on neuronal survival and dendritic self-avoidance. The Journal of Neuroscience. 38 (11), 2713-2729 (2018).
  35. Williams, P. R., Morgan, J. L., Kerschensteiner, D., Wong, R. O. L. In vitro imaging of retinal whole mounts. Cold Spring Harbor Protocols. 2013 (1), (2013).
  36. Ramoa, A. S., Campbell, G., Shatz, C. J. Transient morphological features of identified ganglion cells in living fetal and neonatal retina. Science. 237 (4814), 522-525 (1987).
  37. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9, 676-682 (2012).
  38. Peng, H., Ruan, Z., Long, F., Simpson, J. H., Myers, E. W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology. 28 (4), 348-353 (2010).
  39. Cuntz, H., Forstner, F., Borst, A., Häusser, M. One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Computational Biology. 6 (8), 1000877 (2010).
  40. Xiao, H., Peng, H. APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics. 29 (11), 1448-1454 (2013).
  41. Nanda, S., et al. Design and implementation of multi-signal and time-varying neural reconstructions. Scientific data. 5, 170207 (2018).
  42. Sherry, D. M., Wang, M. M., Bates, J., Frishman, L. J. Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits. The Journal of Comparative Neurology. 465 (4), 480-498 (2003).
  43. Johnson, J., et al. Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: GABA and glycine precede glutamate. The Journal of Neuroscience. 23 (2), 518-529 (2003).
  44. Jüttner, J., et al. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nature Neuroscience. 22 (8), 1345-1356 (2019).
  45. Zincarelli, C., Soltys, S., Rengo, G., Rabinowitz, J. E. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Molecular Therapy. 16 (6), 1073-1080 (2008).
  46. Petros, T. J., Rebsam, A., Mason, C. A. In utero and ex vivo electroporation for gene expression in mouse retinal ganglion cells. Journal of Visualized Experiments: JoVE. (31), e1333 (2009).
  47. Lye, M. H., Jakobs, T. C., Masland, R. H., Koizumi, A. Organotypic culture of adult rabbit retina. Journal of Visualized Experiments: JoVE. (3), e190 (2007).
  48. Pignatelli, V., Strettoi, E. Bipolar cells of the mouse retina: a gene gun, morphological study. The Journal of Comparative Neurology. 476 (3), 254-266 (2004).
  49. Huckfeldt, R. M., et al. Transient neurites of retinal horizontal cells exhibit columnar tiling via homotypic interactions. Nature Neuroscience. 12 (1), 35-43 (2009).
  50. Prahst, C., et al. Mouse retinal cell behaviour in space and time using light sheet fluorescence microscopy. eLife. 9, 49779 (2020).

Play Video

Cite This Article
Ing-Esteves, S., Lefebvre, J. L. Time-Lapse Imaging of Neuronal Arborization using Sparse Adeno-Associated Virus Labeling of Genetically Targeted Retinal Cell Populations. J. Vis. Exp. (169), e62308, doi:10.3791/62308 (2021).

View Video