Summary

Aislamiento, propagación y expresión de la proteína del prión durante la diferenciación Neuronal de células madre de pulpa Dental humana

Published: March 18, 2019
doi:

Summary

Aquí presentamos un protocolo para aislamiento de células de la pulpa Dental humana y propagación con el fin de evaluar la expresión de la proteína del prión durante el proceso de diferenciación neuronal.

Abstract

Cuestiones bioéticas relacionadas con la manipulación de células madre embrionarias han impedido avances en el campo de la investigación médica. Por esta razón, es muy importante obtener las células madre adultas de diferentes tejidos como el adiposo, cordón umbilical, médula ósea y sangre. Entre las posibles fuentes, la pulpa dental es particularmente interesante porque es fácil de obtener con respecto a consideraciones bioéticas. De hecho, células de madre pulpa Dental humana (hDPSCs) son un tipo de células madre adultas capaces de diferenciarse en células neuronales y puede obtenerse desde el tercer molar de pacientes sanos (edades de 13-19). En particular, la pulpa dental elimina con una excavadora, cortar en pequeñas rodajas, trataron con colagenasa IV y cultivada en un matraz. Para inducir la diferenciación neuronal, hDPSCs fueron estimuladas con EGF/bFGF durante 2 semanas. Previamente, hemos demostrado que durante el proceso de diferenciación del contenido de priónica celular proteína (PrPC) en hDPSCs aumentado. El análisis cytofluorimetric mostró una expresión temprana de PrPC que aumentó después del proceso de diferenciación neuronal. Ablación de PrPC por siRNA PrP previene la diferenciación neuronal inducida por EGF/bFGF. En este artículo ilustramos que mejoramos el aislamiento, separación y en vitro métodos de cultivo de hDPSCs con varios procedimientos fáciles, más eficientes células clones eran obtenido y gran expansión de las células madre mesenquimales (MSCs) se observó. También mostramos cómo hDPSCs, obtenidos con métodos detallados en el protocolo, son un excelente modelo experimental para estudiar el proceso de diferenciación neuronal de MSCs y los procesos celulares y moleculares posteriores.

Introduction

Las células madre mesenquimales se han aislado de varios tejidos, incluyendo la médula ósea, sangre del cordón umbilical, la pulpa dental humana, tejido adiposo y sangre1,2,3,4,5 , 6. según varios autores, hDPSCs Mostrar adhesión de plástico, una típica morfología de fibroblasto-como. Estos representan una población muy heterogénea con diferentes clones y diferencias en la capacidad proliferativa y de diferenciación7,8. hDPSCs expresan marcadores específicos de células madre mesenquimales (es decir, CD44, CD90, CD73, CD105, STRO-1), son negativos para algunos marcadores hematopoyéticos (como CD14 y CD19) y son capaces de diferenciación in vitro del multilineage9, 10,11.

Varios autores han demostrado que estas células son capaces de diferenciarse en neuronas-como las células utilizando diferentes protocolos, que incluyen la adición de NGF, bFGF, EGF en combinación con determinados medios y suplementos de7,12. Además, muchas proteínas están involucradas durante el proceso de diferenciación neuronal y, entre estos, varios trabajos muestran un papel relevante y significativa expresión de la proteína priónica celular (PrPC), tanto en las células madre embrionarias y adultas13, 14. PrPC representa una molécula pleiotrópica capaz de realizar diferentes funciones dentro de las células como cobre metabolismo, apoptosis, y resistencia a oxidativo estrés15,16,17 , 18 , 19 , 20 , 21 , 22.

En nuestro anterior documento23, investigamos el papel de PrPC en el proceso de diferenciación neuronal hDPSCs. De hecho, hDPSCs expresar precozmente PrPC y, después de la diferenciación neuronal, fue posible observar un aumento adicional. Otros autores la hipótesis de un posible papel del PrPC en los procesos de diferenciación neuronal de células madre. De hecho, PrPC conduce a la diferenciación de células madre embrionarias humanas en neuronas, oligodendrocitos y astrocitos24. El propósito de este estudio era hacer hincapié en la metodología para la obtención de células madre de pulpa dental, su proceso de diferenciación y la función de PrPC durante la diferenciación neuronal.

Protocol

Terceros molares en el estudio fueron suprimidos de los pacientes (13-19 años) sin historia previa de consumo de alcohol o drogas, todas para no fumadores y con adecuada higiene oral. En el día de la explicación, en el Departamento de ciencia odontología y maxilofacial de la Universidad “Sapienza” de Roma, se obtuvo consentimiento informado de los pacientes o los padres. Consentimiento informado se obtuvo basado en consideraciones éticas y la aprobación del Comité de ética. 1. el diente …

Representative Results

Los procedimientos de aislamiento y separación de hDPSCs de la pulpa dental, obtenida del tercer molar, son procesos complejos en que pequeños cambios pueden provocar un resultado ruinoso. En este trabajo, utilizamos el protocolo de Arthur et al.. 12 con varias mejoras. Figura 1muestra un esquema representativo de los procedimientos. hDPSCs representa una població…

Discussion

En este trabajo, nos enfocamos en la metodología para el aislamiento y la diferenciación neuronal de hDPSCs; Además, evaluamos el papel del PrPC en este proceso. Existen varios métodos para aislar y diferenciar hDPSCs neurona-como las células y pasos críticos durante el proceso. hDPSCs son capaces de diferenciarse en varios linajes como condroblastos, adipocitos, osteoblastos y las neuronas. En nuestro trabajo, hemos investigado los mecanismos de la diferenciación neuronal y la presencia de PrPC</s…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este trabajo fue apoyado por la “Fondazione Varrón” y Rieti Universidad “Sabina Universitas” a Vincenzo Mattei.

Figura 5 (A, B) reimpreso con el permiso de la editorial Taylor & Francis Ltd de: complejos multimoleculares de papel de prión proteína EGFR durante la diferenciación neuronal de dentales pulpa derivada de células madre humanas. Martellucci, S., V. de Manganelli, Santacroce C. F. Santilli, L. Piccoli, M. Sorice, V. Mattei prión. 2018 4 de Mar. Taylor & Francis Ltd.

Materials

Amphotericin B solution Sigma-Aldrich A2942 It is use to supplement cell culture media, it is a polyene antifungal antibiotic from Streptomyce
Anti-B3tubulin Cell Signaling Technology  #4466 One of six B-tubulin isoform, it is expressed highly during fetal and postnatal development, remaining high in the peripheral nervous system
Anti-CD105  BD Biosciences 611314 Endoglin (CD105), a major glycoprotein of human vascular endothelium, is a type I integral membrane protein with a large extracellular region, a hydrophobic transmembrane region, and a short cytoplasmic tail
Anti-CD44 Millipore CBL154-20ul Positive cell markers antibodies directed against mesenchymal stem cells
Anti-CD73  Cell Signaling Technology  13160 CD73 is a 70 kDa glycosyl phosphatidylinositol-anchored, membrane-bound glycoprotein that catalyzes the hydrolysis of extracellular nucleoside monophosphates into bioactive nucleosides
Anti-CD90 Millipore CBL415-20ul Positive cell markers antibodies directed against mesenchymal stem cells
Anti-GAP43  Cell Signaling Technology  #8945 Is a nervous system specific, growth-associated protein in growth cones and areas of high plasticity
Anti-mouse PE  Abcam ab7003 Is an antibody used in in flow cytometry or FACS analysis
Anti-NFH  Cell Signaling Technology  #2836 Is an antibody that detects endogenous levels of total Neurofilament-H protein
Anti-PrP mAb EP1802Y  Abcam ab52604 Rabbit monoclonal [EP 1802Y] to Prion protein PrP
Anti-rabbit CY5  Abcam ab6564 Is an antibody used in in flow cytometry or FACS analysis
Anti-STRO 1 Millipore MAB4315-20ul Positive cell markers antibodies directed against mesenchymal stem cells
B27 Supp XF CTS Gibco by life technologies A14867-01 B-27  can be used to support induction of human neural stem cells (hNSCs) from pluripotent stem cells (PSCs), expansion of hNSCs, differentiation of hNSCs, and maintenance of mature differentiated neurons in culture
BD Accuri C6 flow cytometer  BD Biosciences AC6531180187 Flow cytometer equipped with a blue laser (488 nm) and a red laser (640 nm)
BD Accuri C6 Software  BD Biosciences Controls the BD Accuri C6 flow cytometer system in order to acquire data, generate statistics, and analyze results
bFGF PeproThec, DBA 100-18B basic Fibroblast Growth Factor 
Centrifuge CL30R Termo fisher Scientific 11210908 it is a device that is used for the separation of fluids,gas or liquid, based on density
CO2 Incubator 3541 Termo fisher Scientific 317527-185 it ensures optimal and reproducible growth conditions for cell cultures
Collagenase, type IV  Life Technologies 17104019 Collagenase is a protease that cleaves the bond between a neutral amino acid (X) and glycine in the sequence Pro-X-Glyc-Pro, which is found with high frequency in collagen
Disposable scalpel  Swann-Morton 501 It is use to cut tissues
DMEM-L Euroclone ECM0060L Dulbecco's Modified Eagle's Medium Low Glucose with L-Glutamine with Sodium Pyruvate
EGF PeproThec, DBA AF-100-15 Epidermal Growth Factor 
Fetal Bovine Serum Gibco by life technologies 10270-106 FBS is a popular media supplement because it provides a wide array of functions in cell culture. FBS delivers nutrients, growth and attachment factors and protects cells from oxidative damage and apoptosis by mechanisms that are difficult to reproduce in serum-free media (SFM) systems
Filtropur BT50 0.2,500ml Bottle top filter Sarstedt 831,823,101 it is a device that is used for filtration of solutions
Flexitube GeneSolution for PRNP Qiagen GS5621 4 siRNAs for Entrez gene 5621. Target sequence N.1 TAGAGATTTCATAGCTATTTA  N.2 CAGCAAATAACCATTGGTTAA  N.3. CTGAATCGTTTCATGTAAGAA  N.4  CAGTGACTATGAGGACCGTTA
Hank's solution 1x Gibco by life technologies 240200083 The essential function of Hanks′ Balanced Salt solution is to maintain pH as well as osmotic balance. It also provides water and essential inorganic ions to cells
HiPerFect Transfection Reagent  Qiagen 301705 HiPerFect Transfection Reagent is a unique blend of cationic and neutral lipids that enables effective siRNA uptake and efficient release of siRNA inside cells, resulting in high gene knockdown even when using low siRNA concentrations
Neurobasal A  Gibco by life technologies 10888022 Neurobasal-A Medium is a basal medium designed for long-term maintenance and maturation of pure post-natal and adult brain neurons 
Paraformaldehyde Sigma-Aldrich 30525-89-4 Paraformaldehyde has been used for fixing of cells and tissue sections during staining procedures
penicillin/streptomycin  Euroclone ECB3001D  It is use to supplement cell culture media to control bacterial contamination
Phosphate buffered saline  (PBS) Euroclone ECB4004LX10  PBS is a balanced salt solution used for the handling and culturing of mammalian cells. PBS is used to to irrigate, wash, and dilute mammalian cells. Phosphate buffering maintains the pH in the physiological range
TC-Platte 6 well, Cell+,F Sarstedt 833,920,300 It is a growth surface for adherent cells
Tissue culture flask T-25,Cell+,Vented Cap Sarstedt 833,910,302 Tissue culture flask T-25, polystyrene, Cell+ growth surface for sensitive adherent cells, e.g. primary cells, canted neck, ventilation cap, yellow, sterile, Pyrogen-free, non-cytotoxic, 10 pcs./bag
Triton X-100  Sigma-Aldrich 9002-93-1 Widely used non-ionic surfactant for recovery of membrane components under mild non-denaturing conditions
Trypsin-EDTA  Euroclone ECB3052D  Trypsin will cleave peptides on the C-terminal side of lysine and arginine amino acid residues. Trypsin is used to remove adherent cells from a culture surface
Tube Sarstedt 62,554,502 Tube 15ml, 120x17mm, PP
VBH 36 C2 Compact Steril ST-003009000 Offers totally protection for the enviroment and worker
ZEISS Axio Vert.A1 – Inverted Microscope Zeiss 3849000962 ZEISS Axio Vert.A1 provides a unique entry level price and can provide all contrasting techniques, including brightfield, phase contrast, PlasDIC, VAREL, improved Hoffman Modulation Contrast (iHMC), DIC and fluorescence. Incorporate LED illumination for gentle imaging for fluorescently-labeled cells. Axio Vert.A1 is ergonomically designed for routine work and compact enough to sit inside tissue culture hoods.

References

  1. Robey, P. G., Kuznetsov, S. A., Riminucci, M., Bianco, P. Bone marrow stromal cell assays: in vitro and in vivo. Methods in Molecular Biology. 1130, 279-293 (2014).
  2. Jiang, Y., et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 418, 1-49 (2002).
  3. Kern, S., Eichler, H., Stoeve, J., Kluter, H., Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 24, 1294-1301 (2006).
  4. Zannettino, A. C. W., et al. Multi-potential Human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. Journal of Cellular Physiology. 214, 413-421 (2008).
  5. Mattei, V., et al. Role of lipid rafts in neuronal differentiation of dental pulp-derived stem cells. Experimental Cell Research. 339, 231-240 (2015).
  6. Jansen, J., Hanks, S., Thompson, J. M., Dugan, M. J., Akard, L. P. Transplantation of hematopoietic stem cells from the peripheral blood. Journal of Cellular and Molecular Medicine. 9 (1), 37-50 (2005).
  7. Young, F. I., et al. Clonal heterogeneity in the neuronal and glial differentiation of dental pulp stem/progenitor cells. Stem Cells International. 2016, 1290561 (2016).
  8. Pisciotta, A., et al. Human dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations. BMC Developmental Biology. 15, 14 (2015).
  9. Atari, M., et al. Dental pulp of the third molar: a new source of pluripotent-like stem cells. Journal of Cell Science. 125, 3343-3356 (2012).
  10. Koyama, N., Okubo, Y., Nakao, K., Bessho, K. Evaluation of pluripotency in human dental pulp cells. Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons. 67, 501-506 (2009).
  11. Gronthos, S., et al. Stem cell properties of human dental pulp stem cells. Journal of Dental Research. 81, 531-535 (2002).
  12. Arthur, A., Rychkov, G., Shi, S., Koblar, S. A., Gronthos, S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells. 7, 1787-1795 (2008).
  13. Lee, Y. J., Baskakov, I. V. The cellular form of the prion protein is involved in controlling cell cycle dynamics, self-renewal, and the fate of human embryonic stem cell differentiation. Journal of Neurochemistry. 124, 310-322 (2013).
  14. Steele, A. D., Emsley, J. G., Ozdinler, P. H., Lindquist, S., Macklis, J. D. Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proceedings of the National Academy of Sciences of the United States of America. 103, 3416-3421 (2006).
  15. Wulf, M. A., Senatore, A., Aguzzi, A. The biological function of the cellular prion protein: an update. BMC Biology. 15, 34 (2017).
  16. Mattei, V., et al. Recruitment of cellular prion protein to mitochondrial raft-like microdomains contributes to apoptosis execution. Molecular Biology of the Cell. 22, 4842-4853 (2011).
  17. Linden, R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Frontiers in Molecular Neuroscience. 10, 77 (2017).
  18. Garofalo, T., et al. Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis. Apoptosis. , 621-634 (2015).
  19. Watt, N. T., et al. Reactive oxygen species-mediated beta-cleavage of the prion protein in the cellular response to oxidative stress. The Journal of Biological Chemistry. 280, 35914-35921 (2005).
  20. Mattei, V., et al. Morphine Withdrawal Modifies Prion Protein Expression in Rat Hippocampus. PLoS One. 12, 0169571 (2017).
  21. Hu, W., et al. Prion proteins: physiological functions and role in neurological disorders. Journal of the Neurological Sciences. 264, 1-8 (2008).
  22. Sorice, M., et al. Trafficking of PrPC to mitochondrial raft-like microdomains during cell apoptosis. Prion. 6, 354-358 (2012).
  23. Martellucci, S., et al. Role of Prion protein-EGFR multimolecular complex during neuronal differentiation of human dental pulp-derived stem cells. Prion. 12 (2), 117-126 (2018).
  24. Lee, Y. J., Baskokov, I. V. The cellular form of the prion protein guides the differentiation of human embryonic stem cell into neuron-, oligodendrocyte- and astrocyte-committed lineages. Prion. 8, 266-275 (2014).
  25. Huang, G. T., Sonoyama, W., Chen, J., Park, S. H. In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell and Tissue Research. 324, 225-236 (2006).
  26. Suchanek, J., et al. Dental pulp stem cells and their characterization. Biomedical papers of the Medical Faculty of the University Palacký. 153, 31-35 (2009).
  27. Bressan, E., et al. Donor age-related biological properties of human dental pulp stem cells change in nanostructured scaffolds. PLoS One. 7 (11), 49146 (2012).

Play Video

Cite This Article
Martellucci, S., Santacroce, C., Manganelli, V., Santilli, F., Piccoli, L., Cassetta, M., Misasi, R., Sorice, M., Mattei, V. Isolation, Propagation, and Prion Protein Expression During Neuronal Differentiation of Human Dental Pulp Stem Cells. J. Vis. Exp. (145), e59282, doi:10.3791/59282 (2019).

View Video