Summary

Isolamento, propagação e expressão de proteína príon durante a diferenciação Neuronal de células-tronco humanas polpa Dental

Published: March 18, 2019
doi:

Summary

Aqui nós apresentamos um protocolo para isolamento de células-tronco polpa Dental humana e propagação a fim de avaliar a expressão da proteína príon durante o processo de diferenciação neuronal.

Abstract

Problemas bioéticos relacionados à manipulação de células-tronco embrionárias tem dificultado avanços no campo da pesquisa médica. Por esta razão, é muito importante obter células-tronco adultas de diferentes tecidos como adiposo, cordão umbilical, medula óssea e sangue. Entre as fontes possíveis, a polpa dental é particularmente interessante, porque é fácil de obter em relação às considerações bioéticas. Com efeito, Dental Pulp células estaminais humanas (hDPSCs) são um tipo de células-tronco adultas possam diferenciar em células neuronais e pode ser obtido o terceiro molar de pacientes saudáveis (idade 13-19). Em particular, a polpa dental foi removida com uma escavadeira, corte em fatias pequenas, tratada com colagenase IV e cultivada em um balão. Para induzir a diferenciação neuronal, hDPSCs foram estimulados com EGF/bFGF por 2 semanas. Anteriormente, temos demonstrado que durante o processo de diferenciação do conteúdo de celular prion proteínas (PrPC) no hDPSCs aumentaram. A análise cytofluorimetric mostrou uma expressão inicial de PrPC que aumentou após o processo de diferenciação neuronal. Ablação do PrPC por siRNA PrP impediu a diferenciação neuronal induzida pelo bFGF/EGF. Neste trabalho, ilustramos que como temos realçado o isolamento, separação e em vitro métodos de cultivo de hDPSCs com vários procedimentos fácil, mais eficientes clones de células foram obtido e em grande escala de expansão das células tronco mesenquimais (MSCs) observou-se. Também mostramos como os hDPSCs, obtidos com métodos detalhados no protocolo, são um excelente modelo experimental para estudar o processo de diferenciação neuronal de MSCs e subsequentes processos celulares e moleculares.

Introduction

Células-tronco mesenquimais foram isoladas de vários tecidos, incluindo a medula óssea, sangue de cordão umbilical, polpa dentária humana, tecido adiposo e sangue1,2,3,4,5 , 6. como relatado por vários autores, hDPSCs mostrar aderência de plástico, uma morfologia típica de fibroblasto tipo. Estes representam uma população altamente heterogênea com clones distintos e diferenças na capacidade proliferativa e diferenciação7,8. hDPSCs express marcadores específicos para células-tronco mesenquimais (ou seja, CD44, CD90, CD73, CD105, STRO-1), são negativos para alguns marcadores hematopoiéticas (tais como o CD14 e CD19) e são capazes de diferenciação in vitro de multilineage9, 10,11.

Vários autores têm mostrado que essas células são capazes de se diferenciar em células neurônio usando protocolos diferentes, que incluem a adição de NGF, bFGF, EGF em combinação com o específico mídia e suplementos7,12. Além disso, muitas proteínas estão envolvidas durante o processo de diferenciação neuronal e, entre estes, vários trabalhos mostram um papel relevante e significativa expressão da proteína príon celular PrP (C), ambos em células-tronco adultas e embrionárias13, 14. PrPC representa uma molécula pleiotrópicos capaz de executar diferentes funções no interior das células como metabolismo de cobre, apoptose, e resistência à oxidativo estresse15,16,17 , 18 , 19 , 20 , 21 , 22.

Nosso papel anterior23, investigamos o papel do PrPC no processo de diferenciação neuronal hDPSCs. Na verdade, hDPSCs express precocemente PrPC e, após a diferenciação neuronal, foi possível observar um aumento adicional. Outros autores a hipótese de um possível papel de PrPC em processos de diferenciação neuronal de células-tronco. Com efeito, PrPC dirige a diferenciação de células-tronco embrionárias humanas em neurônios, oligodendrócitos e astrócitos24. O objetivo deste estudo foi enfatizar a metodologia para a obtenção de células-tronco da polpa dentária, seu processo de diferenciação e o papel do PrPC durante a diferenciação neuronal.

Protocol

Terceiros molares utilizados no estudo foram extirpados de pacientes (13-19 anos de idade) com nenhuma história prévia de consumo de álcool ou de drogas, todos os não-fumantes e com adequada higiene oral. No dia da explicação, no departamento de ciência Odontologia e -maxilo-facial da Universidade de “Sapienza” de Roma, consentimento informado foi obtido os pacientes ou os pais. Consentimento informado foi obtido com base em considerações éticas e aprovação do Comitê de ética. 1. d…

Representative Results

Os procedimentos de isolamento e separação de hDPSCs da polpa dental, obtida a partir do terceiro molar, são processos complexos, em que pequenas mudanças podem levar a um resultado desastroso. Neste trabalho, utilizamos o protocolo de Arthur et al.. 12 com várias melhorias. Um esquema representativo dos procedimentos é mostrado na Figura 1. hDPSCs representa u…

Discussion

Neste trabalho, concentrámo-na metodologia para isolamento e diferenciação neuronal de hDPSCs; Além disso, avaliamos o papel do PrPC neste processo. Existem vários métodos para isolar e diferenciar hDPSCs em células neurônio e passos críticos durante o processo. hDPSCs são capazes de se diferenciar em várias linhagens como condroblastos, osteoblastos, adipócitos e neurônios. Nosso papel, investigamos os mecanismos de diferenciação neuronal e a presença de PrPC. Como discutido acima, …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi apoiado pela “Fondazione Varrone” e Universidade de Rieti Hub “Sabina Universitas” de Vincenzo Mattei.

Figura 5 (A, B) reimpresso com permissão da editora Taylor & Francis Ltd de: complexo multimolecular de papel de príon proteína EGFR durante a diferenciação neuronal de dentais derivado de celulose células estaminais humanas. Martellucci, S., V. de Manganelli, Santacroce C. F. Santilli, L. Piccoli, M. Sorice, V. Mattei prião. 4 de março de 2018. Taylor & Francis Ltd.

Materials

Amphotericin B solution Sigma-Aldrich A2942 It is use to supplement cell culture media, it is a polyene antifungal antibiotic from Streptomyce
Anti-B3tubulin Cell Signaling Technology  #4466 One of six B-tubulin isoform, it is expressed highly during fetal and postnatal development, remaining high in the peripheral nervous system
Anti-CD105  BD Biosciences 611314 Endoglin (CD105), a major glycoprotein of human vascular endothelium, is a type I integral membrane protein with a large extracellular region, a hydrophobic transmembrane region, and a short cytoplasmic tail
Anti-CD44 Millipore CBL154-20ul Positive cell markers antibodies directed against mesenchymal stem cells
Anti-CD73  Cell Signaling Technology  13160 CD73 is a 70 kDa glycosyl phosphatidylinositol-anchored, membrane-bound glycoprotein that catalyzes the hydrolysis of extracellular nucleoside monophosphates into bioactive nucleosides
Anti-CD90 Millipore CBL415-20ul Positive cell markers antibodies directed against mesenchymal stem cells
Anti-GAP43  Cell Signaling Technology  #8945 Is a nervous system specific, growth-associated protein in growth cones and areas of high plasticity
Anti-mouse PE  Abcam ab7003 Is an antibody used in in flow cytometry or FACS analysis
Anti-NFH  Cell Signaling Technology  #2836 Is an antibody that detects endogenous levels of total Neurofilament-H protein
Anti-PrP mAb EP1802Y  Abcam ab52604 Rabbit monoclonal [EP 1802Y] to Prion protein PrP
Anti-rabbit CY5  Abcam ab6564 Is an antibody used in in flow cytometry or FACS analysis
Anti-STRO 1 Millipore MAB4315-20ul Positive cell markers antibodies directed against mesenchymal stem cells
B27 Supp XF CTS Gibco by life technologies A14867-01 B-27  can be used to support induction of human neural stem cells (hNSCs) from pluripotent stem cells (PSCs), expansion of hNSCs, differentiation of hNSCs, and maintenance of mature differentiated neurons in culture
BD Accuri C6 flow cytometer  BD Biosciences AC6531180187 Flow cytometer equipped with a blue laser (488 nm) and a red laser (640 nm)
BD Accuri C6 Software  BD Biosciences Controls the BD Accuri C6 flow cytometer system in order to acquire data, generate statistics, and analyze results
bFGF PeproThec, DBA 100-18B basic Fibroblast Growth Factor 
Centrifuge CL30R Termo fisher Scientific 11210908 it is a device that is used for the separation of fluids,gas or liquid, based on density
CO2 Incubator 3541 Termo fisher Scientific 317527-185 it ensures optimal and reproducible growth conditions for cell cultures
Collagenase, type IV  Life Technologies 17104019 Collagenase is a protease that cleaves the bond between a neutral amino acid (X) and glycine in the sequence Pro-X-Glyc-Pro, which is found with high frequency in collagen
Disposable scalpel  Swann-Morton 501 It is use to cut tissues
DMEM-L Euroclone ECM0060L Dulbecco's Modified Eagle's Medium Low Glucose with L-Glutamine with Sodium Pyruvate
EGF PeproThec, DBA AF-100-15 Epidermal Growth Factor 
Fetal Bovine Serum Gibco by life technologies 10270-106 FBS is a popular media supplement because it provides a wide array of functions in cell culture. FBS delivers nutrients, growth and attachment factors and protects cells from oxidative damage and apoptosis by mechanisms that are difficult to reproduce in serum-free media (SFM) systems
Filtropur BT50 0.2,500ml Bottle top filter Sarstedt 831,823,101 it is a device that is used for filtration of solutions
Flexitube GeneSolution for PRNP Qiagen GS5621 4 siRNAs for Entrez gene 5621. Target sequence N.1 TAGAGATTTCATAGCTATTTA  N.2 CAGCAAATAACCATTGGTTAA  N.3. CTGAATCGTTTCATGTAAGAA  N.4  CAGTGACTATGAGGACCGTTA
Hank's solution 1x Gibco by life technologies 240200083 The essential function of Hanks′ Balanced Salt solution is to maintain pH as well as osmotic balance. It also provides water and essential inorganic ions to cells
HiPerFect Transfection Reagent  Qiagen 301705 HiPerFect Transfection Reagent is a unique blend of cationic and neutral lipids that enables effective siRNA uptake and efficient release of siRNA inside cells, resulting in high gene knockdown even when using low siRNA concentrations
Neurobasal A  Gibco by life technologies 10888022 Neurobasal-A Medium is a basal medium designed for long-term maintenance and maturation of pure post-natal and adult brain neurons 
Paraformaldehyde Sigma-Aldrich 30525-89-4 Paraformaldehyde has been used for fixing of cells and tissue sections during staining procedures
penicillin/streptomycin  Euroclone ECB3001D  It is use to supplement cell culture media to control bacterial contamination
Phosphate buffered saline  (PBS) Euroclone ECB4004LX10  PBS is a balanced salt solution used for the handling and culturing of mammalian cells. PBS is used to to irrigate, wash, and dilute mammalian cells. Phosphate buffering maintains the pH in the physiological range
TC-Platte 6 well, Cell+,F Sarstedt 833,920,300 It is a growth surface for adherent cells
Tissue culture flask T-25,Cell+,Vented Cap Sarstedt 833,910,302 Tissue culture flask T-25, polystyrene, Cell+ growth surface for sensitive adherent cells, e.g. primary cells, canted neck, ventilation cap, yellow, sterile, Pyrogen-free, non-cytotoxic, 10 pcs./bag
Triton X-100  Sigma-Aldrich 9002-93-1 Widely used non-ionic surfactant for recovery of membrane components under mild non-denaturing conditions
Trypsin-EDTA  Euroclone ECB3052D  Trypsin will cleave peptides on the C-terminal side of lysine and arginine amino acid residues. Trypsin is used to remove adherent cells from a culture surface
Tube Sarstedt 62,554,502 Tube 15ml, 120x17mm, PP
VBH 36 C2 Compact Steril ST-003009000 Offers totally protection for the enviroment and worker
ZEISS Axio Vert.A1 – Inverted Microscope Zeiss 3849000962 ZEISS Axio Vert.A1 provides a unique entry level price and can provide all contrasting techniques, including brightfield, phase contrast, PlasDIC, VAREL, improved Hoffman Modulation Contrast (iHMC), DIC and fluorescence. Incorporate LED illumination for gentle imaging for fluorescently-labeled cells. Axio Vert.A1 is ergonomically designed for routine work and compact enough to sit inside tissue culture hoods.

References

  1. Robey, P. G., Kuznetsov, S. A., Riminucci, M., Bianco, P. Bone marrow stromal cell assays: in vitro and in vivo. Methods in Molecular Biology. 1130, 279-293 (2014).
  2. Jiang, Y., et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 418, 1-49 (2002).
  3. Kern, S., Eichler, H., Stoeve, J., Kluter, H., Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 24, 1294-1301 (2006).
  4. Zannettino, A. C. W., et al. Multi-potential Human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. Journal of Cellular Physiology. 214, 413-421 (2008).
  5. Mattei, V., et al. Role of lipid rafts in neuronal differentiation of dental pulp-derived stem cells. Experimental Cell Research. 339, 231-240 (2015).
  6. Jansen, J., Hanks, S., Thompson, J. M., Dugan, M. J., Akard, L. P. Transplantation of hematopoietic stem cells from the peripheral blood. Journal of Cellular and Molecular Medicine. 9 (1), 37-50 (2005).
  7. Young, F. I., et al. Clonal heterogeneity in the neuronal and glial differentiation of dental pulp stem/progenitor cells. Stem Cells International. 2016, 1290561 (2016).
  8. Pisciotta, A., et al. Human dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations. BMC Developmental Biology. 15, 14 (2015).
  9. Atari, M., et al. Dental pulp of the third molar: a new source of pluripotent-like stem cells. Journal of Cell Science. 125, 3343-3356 (2012).
  10. Koyama, N., Okubo, Y., Nakao, K., Bessho, K. Evaluation of pluripotency in human dental pulp cells. Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons. 67, 501-506 (2009).
  11. Gronthos, S., et al. Stem cell properties of human dental pulp stem cells. Journal of Dental Research. 81, 531-535 (2002).
  12. Arthur, A., Rychkov, G., Shi, S., Koblar, S. A., Gronthos, S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells. 7, 1787-1795 (2008).
  13. Lee, Y. J., Baskakov, I. V. The cellular form of the prion protein is involved in controlling cell cycle dynamics, self-renewal, and the fate of human embryonic stem cell differentiation. Journal of Neurochemistry. 124, 310-322 (2013).
  14. Steele, A. D., Emsley, J. G., Ozdinler, P. H., Lindquist, S., Macklis, J. D. Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proceedings of the National Academy of Sciences of the United States of America. 103, 3416-3421 (2006).
  15. Wulf, M. A., Senatore, A., Aguzzi, A. The biological function of the cellular prion protein: an update. BMC Biology. 15, 34 (2017).
  16. Mattei, V., et al. Recruitment of cellular prion protein to mitochondrial raft-like microdomains contributes to apoptosis execution. Molecular Biology of the Cell. 22, 4842-4853 (2011).
  17. Linden, R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Frontiers in Molecular Neuroscience. 10, 77 (2017).
  18. Garofalo, T., et al. Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis. Apoptosis. , 621-634 (2015).
  19. Watt, N. T., et al. Reactive oxygen species-mediated beta-cleavage of the prion protein in the cellular response to oxidative stress. The Journal of Biological Chemistry. 280, 35914-35921 (2005).
  20. Mattei, V., et al. Morphine Withdrawal Modifies Prion Protein Expression in Rat Hippocampus. PLoS One. 12, 0169571 (2017).
  21. Hu, W., et al. Prion proteins: physiological functions and role in neurological disorders. Journal of the Neurological Sciences. 264, 1-8 (2008).
  22. Sorice, M., et al. Trafficking of PrPC to mitochondrial raft-like microdomains during cell apoptosis. Prion. 6, 354-358 (2012).
  23. Martellucci, S., et al. Role of Prion protein-EGFR multimolecular complex during neuronal differentiation of human dental pulp-derived stem cells. Prion. 12 (2), 117-126 (2018).
  24. Lee, Y. J., Baskokov, I. V. The cellular form of the prion protein guides the differentiation of human embryonic stem cell into neuron-, oligodendrocyte- and astrocyte-committed lineages. Prion. 8, 266-275 (2014).
  25. Huang, G. T., Sonoyama, W., Chen, J., Park, S. H. In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell and Tissue Research. 324, 225-236 (2006).
  26. Suchanek, J., et al. Dental pulp stem cells and their characterization. Biomedical papers of the Medical Faculty of the University Palacký. 153, 31-35 (2009).
  27. Bressan, E., et al. Donor age-related biological properties of human dental pulp stem cells change in nanostructured scaffolds. PLoS One. 7 (11), 49146 (2012).

Play Video

Cite This Article
Martellucci, S., Santacroce, C., Manganelli, V., Santilli, F., Piccoli, L., Cassetta, M., Misasi, R., Sorice, M., Mattei, V. Isolation, Propagation, and Prion Protein Expression During Neuronal Differentiation of Human Dental Pulp Stem Cells. J. Vis. Exp. (145), e59282, doi:10.3791/59282 (2019).

View Video