This manuscript describes the use of transgenic reporter mice and different administration routes of fluorescent dyes in angiotensin II-induced hypertension using intravital video microscopy of blood vessels to evaluate the activation of immune cells and their ability to roll and adhere to the endothelium.
Epifluorescence intravital video microscopy (IVM) of blood vessels is an established method to evaluate the activation of immune cells and their ability to role and adhere to the endothelial layer. Visualization of circulating cells by injection of fluorescent dyes or fluorophore-coupled antibodies is commonly used. Alternatively, fluorescent reporter mice can be used. Interactions of leukocytes, in particular lysozyme M+ (LysM+) monocytes, with the vessel wall play pivotal roles in promoting vascular dysfunction and arterial hypertension. We here present the technique to visualize and quantify leukocyte rolling and adhesion in carotid arteries in angiotensin II (AngII)-induced hypertension in mice by IVM.
The implantation of a catheter damages the vascular wall and leads to altered blood cell responses. We compared different injection techniques and administration routes to visualize leukocytes in a LysMCre+IRG+ mouse with widespread expression of red fluorescent protein and conditional expression of green fluorescent protein in LysM+ cells. To study LysM+ cell activation, we used AngII infused mice in which rolling and adhesion of leukocytes to the endothelium is increased. We either injected acridine orange using a jugular catheter or directly though the tail vein and compared the amount of rolling and adhering cells. We found that jugular catheter implantation per se increased the number of rolling and adhering LysM+ cells in sham-infused LysMCre+IRG+ mice compared to controls. This activation was augmented in AngII-infused mice. Interestingly, injecting acridine orange directly through the tail vein did not increase LysM+ cell adhesion or rolling in sham-infused mice. We thereby demonstrated the importance of transgenic reporter mice expressing fluorescent proteins to not interfere with in vivo processes during experimentation. Furthermore, tail vein injection of fluorescent tracers might be a possible alternative to jugular catheter injections.
Arterial hypertension increases the risk of cardiovascular disease and death and promotes the development of atherosclerosis, coronary heart disease, and arterial or venous thromboembolisms1. The development of hypertension depends on the interaction of environmental, genetic, endocrine, and hemodynamic factors. Currently, immunity and related inflammation are appreciated to play an important role in the etiology of hypertension2.
Among immune cells, T lymphocytes as well as monocytes and macrophages were found to be causally involved in AngII-induced vascular inflammation and hypertension, in part related to their ability to trigger reactive oxygen species3. Macrophage colony-stimulating factor deficient mice showed reduced response to AngII regarding blood pressure increase and vascular inflammation4. In a previous work, we could show that LysM+ monocytes drive vascular dysfunction and inflammation in AngII-induced hypertension5. More recently, we described a novel pathway in which coagulation factor XI cooperates with platelets and the vessel wall to induce thrombin-dependent vascular inflammation6. The current knowledge about the role of the immune system in hypertension was recently summarized and reviewed by Rodriguez-Iturbe et al.7
Since the involvement of immune cells in the development of hypertension became evident, models and techniques to study the interaction between the vessel and immune cells became necessary. Epifluorescence IVM of blood vessels is a useful tool to observe in vivo interactions between circulating blood cells and the endothelium8,9,10. With this technique, injection of dyes intercalating with DNA (such as acridine orange) can visualize nucleated cells (circulating as well as from the endothelium). Isolated platelets stained ex vivo with rhodamin-6G or dichlorofluorescein (DCF) can be injected to visualize platelet-rich thrombus in arterial or venous injury models.
Typically, a jugular vein catheter is used to inject tracers or marked platelets. Alteration of the endothelium and subsequent activation of the coagulation cascade are both known to have effects on monocyte activation. Endothelial injury immediately leads to platelet activation via subendothelial matrix molecules to seal the tissue, with ensuing monocyte attraction and activation11. On the contrary, an intact endothelium is known to have anticoagulant properties (e.g., via tissue factor pathway inhibitor or thrombomodulin)12 and direct inhibitory effects on the monocyte, e.g., through the secretion of extracellular vesicles containing microRNAs13. Monocytes are known to produce a tissue factor, the extrinsic activator of the coagulation cascade and express protease-activated receptors (PARs) that can be activated by thrombin and participate in monocyte activation14,15. Therefore, any activation of platelets or of the coagulation cascade due to vascular injury may have unexpected effects on monocyte activation and interfere with the observed phenomenon. With the help of IRG transgenic LysM Cre transgenic mice, a double-fluorescent Cre reporter mouse (LysMCre+IRG+), we propose to study in detail the effect of injections with a catheter and alternative methods on LysM+ myelomonocytic cells in a mouse model of arterial hypertension16.
Experiments were conducted on male mice age 8 to 12 weeks old under the approval of the ethics committee on animal experimentation from Rhineland-Palatinate (authorization number 23 177-07/G12-1-002 and 23 177-07/G15-1-051).
1. Mouse Anesthesia and Surgery Preparation
2. Osmotic Pump Preparation and Implantation
NOTE: The subcutaneous AngII infusion using osmotic pumps was described in detail by Lu et al.17
3. Jugular Catheter Implantation and Carotids Preparation
4. Assessment of Rolling and Adhering Leukocytes/LysM+ Cells with IVM
Carotids of LysMCre+IRG+ mice infused with AngII were observed using IVM. Acridine orange was injected using a jugular catheter. We aimed to look at the proportion of LysM+ cells in contact with the vascular wall compared to all nucleated circulating cells (which could also interact with the vessel since discrimination of the cell type interacting with the vessel remained an open question from our previous work). At baseline, the presence of a jugular catheter causes adhesion of LysM+ cells (Figure 2A, D). After acridine orange injection, the same cells were fluorescent, but also the endothelial cells were fluorescent (Figure 2B, E). After the reduction of the background to limit endothelial related fluorescence, the data indicate that all nucleated adhering cells are LysM+ (Figure 2C, F); these results hold true after AngII infusion confirming our previous results and demonstrating that the LysMCre+IRG+ is a good model to observe the effect of AngII on LysM+ cell activation.
We evaluated the role of administration routes of acridine orange on LysM+ cell activation after AngII infusion in LysMCre+IRG+. After one week of AngII infusion, leukocyte endothelium interactions in carotid arteries of LysMCre+IRG+ mice were imaged and visualized by IVM with or without acridine orange injection via a jugular catheter or through the tail vein. Without any catheter or injection, rolling of LysM+ cells was significantly increased after AngII infusion compared to untreated mice, and adhesion showed an increase (Figure 3). Injection of acridine orange with a jugular catheter increased adhesion and rolling in AngII treated mice to a greater extent compared with mice without a catheter (Figure 3). Injection of acridine orange in the tail vein leads to similar adhesion and rolling compared to the mice that did not receive injection of acridine orange (Figure 3).
Figure 1. Scheme for angiotensin II infusion and assessment of LysM+ cells rolling and adhesion in mice. LysMCre+IRG+ mice were infused 7 days with AngII and adhering as well as rolling LysM+ cells over the carotids were quantified with or without injection of acridine orange through a jugular catheter or by tail vein injection. Please click here to view a larger version of this figure.
Figure 2. Assessment of LysM+ cell adhesion and rolling in carotid arteries of LysMCre+IRG+ mice. Adhesion of LysM+ cells in LysMCre+IRG+ mice before (A, D) and after (B, E) acridine injection via a jugular catheter. Red and green fluorescence were recorded, LysM+ cells (in green) and smooth muscle cells (in red) were visible. After injection of acridine orange, endothelial cells are also visible in green but removing background fluorescence allows only circulating nucleated cell visualization (C, F). Please click here to view a larger version of this figure.
Figure 3. Evaluation of administration routes of fluorescent dyes in angiotensin II infused LysMCre+IRG+ mice. Quantification of rolling (A) and adhering (B) LysM+ cells in sham operated or AngII-infused animals and with or without injection of acridine orange using a jugular catheter or by tail vein injection. Representative pictures of the different conditions (C). Results are mean ± standard error of the mean. 2-way ANOVA was performed and Bonferroni's post hoc test, n = 3-12/groups; *p < 0.05. Please click here to view a larger version of this figure.
LysM+ monocytes were previously shown to be implicated in the development of hypertension5. Here we show that LysM+ immune cells roll and adhere to the endothelial layer in response to AngII infusion. This finding was obtained using LysMCre+IRG+ mice from our previous studies exploring the role of immune cells in hypertension in vivo by visualizing leukocytes with injection of acridine orange6,10. Thus, discrimination of cell types adhering to the endothelium was not possible.
The IVM is a very useful tool for vascular studies and in vivo observations of cells directly in the vasculature, but the impact of injecting dyes with the help of a surgically inserted catheter in the inflammatory context of hypertension remains unknown. To evaluate the potential effect of catheter and acridine orange injection we took advantage of the LysMCre+IRG+ mice. AngII infusion increased the number of rolling LysM+ cells to the endothelium. Insertion of a catheter into the jugular vein amplified the effect and more rolling and adhering leukocytes were detected in AngII-infused mice instrumented with a catheter compared to mice without catheter implants. This indicates that implantation of a carotid catheter causes a systemic inflammatory reaction in the context of wound healing that overlays with the immune reaction seen in hypertension18. In addition, due to the proximity of the jugular vein to the carotid artery an additional immune activation might have occurred by affecting the jugular vein. Since this effect was not present when injections were made directly into the tail vein, we can assume that the effect was due not to the dye but to the procedure of inserting the catheter. We demonstrated here the importance of transgenic reporter mice expressing fluorescent proteins to not interfere with in vivo processes during experimentation. Furthermore, tail vein injection of fluorescent tracers might be a possible alternative to jugular catheter injections.
One critical step of the procedure is the AngII infusion. Tail cuff assessment of the blood pressure can be made in order to control the effectiveness of AngII delivery by the pump. Blood pressure should increase after 2−3 days of infusion. To limit inflammation that could influence LysM+ cells activation, closure of the incision where the pump is implanted should be made with sutures instead of clips. One limitation must be noted about tail vein injection: to make the best possible data acquisition, 4 videos are usually taken for each carotid. If the fluorescent signal decreases, 50 µL of acridine orange are injected but with tail injection it is more difficult to make several injections and to keep the carotids stable under the microscope objective. The duration of the presence of a catheter in the jugular vein might also modulate the immune cells activation since it is affecting the coagulation activation in platelet-rich plasma prepared 4 h after the catheter implantation19. This aspect of catheter implantation needs further investigation.
Finally, even if we appreciate the impact of jugular catheter implantation on LysM+ cell activation after AngII infusion, we cannot fully estimate the role of the preparation, skin removal, and carotid isolation on a potential LysM+ cell activation. We conclude that the use of fluorescence reporter mice like the LysMCre+IRG+ mouse is recommended to avoid disruption of vessel integrity during the animal preparation for in vivo imaging.
The authors have nothing to disclose.
This work was supported by the German Ministry for Education and Research (BMBF 01EO1003 and BMBF 01EO1503).
Midazolam | Ratiopharm GmbH | Anesthesia mix | |
Medetomidine | Pfizer Deutschland GmbH | Anesthesia mix | |
Fentanyl | Janssen-Cilag GmbH | Anesthesia mix | |
Alzane | Zoetis | Antisedan mix | |
Flumazenil | Hikma pharma | Antisedan mix | |
Braunol | B Braun | ||
Octeniderm | Schülke | ||
Osmotic pumps | Alzet | 1007D | Osmotic pump implantation |
Angiotensin II | Sigma-Aldrich | Osmotic pump implantation | |
7-0 prolene suture | Ethicon | Osmotic pump implantation | |
Acridine orange | Sigma-Aldrich | ||
Catheter | Smiths Medical Deutschland GmbH | Inside diameter, 0.28 mm; outer diameter, 0.61 mm | |
Microscope | Olympus | BX51WI fluorescence microscope | |
Beam Splitter | Photometrics | CMR-DV2-SYS – DualView2 MicroImager | |
Objective | Olympus | UMPLFLN10X | Water immersion objective with a monochromator |
Camera | Hamamatsu Photonics | ORCA-R2 | |
Image acquisition and analysis software | Olympus | Realtime Imaging System eXcellence RT | |
Mice | The Jackson Laboratory | Jax 008705 | B6.Cg-Tg(CAG-DsRed,-EGFP)5Gae/J |
Mice | The Jackson Laboratory | Jax 004781 | LysM Cre (B6.129P2-Lyz2tm1(cre)Ifo/J ) |