A strategy for generating mutations in histone genes at their endogenous location in Saccharomyces cerevisiae is presented.
We describe a PCR- and homologous recombination-based system for generating targeted mutations in histone genes in budding yeast cells. The resulting mutant alleles reside at their endogenous genomic sites and no exogenous DNA sequences are left in the genome following the procedure. Since in haploid yeast cells each of the four core histone proteins is encoded by two non-allelic genes with highly homologous open reading frames (ORFs), targeting mutagenesis specifically to one of two genes encoding a particular histone protein can be problematic. The strategy we describe here bypasses this problem by utilizing sequences outside, rather than within, the ORF of the target genes for the homologous recombination step. Another feature of this system is that the regions of DNA driving the homologous recombination steps can be made to be very extensive, thus increasing the likelihood of successful integration events. These features make this strategy particularly well-suited for histone gene mutagenesis, but can also be adapted for mutagenesis of other genes in the yeast genome.
Die vier Kern Histonproteine H2A, H2B, H3 und H4 spielen eine zentrale Rolle in der Verdichtung, die Organisation und Funktion von eukaryotischen Chromosomen. Zwei Sätze von jeder dieser Histone bilden die Histonoktamer, ein Molekular Spule, die die Verpackung von ~ 147 Basenpaaren der DNA um sich ergeb leitet schließlich in der Bildung einer Nukleosomen 1. Nukleosomen sind aktive Teilnehmer in einer Vielzahl von Chromosom-basierte Prozesse, wie zum Beispiel die Regulation der Gen-Transkription und die Bildung von Euchromatin und Heterochromatin über Chromosomen, und als solche im Mittelpunkt intensiver Forschung im Laufe der vergangenen Jahrzehnte. Eine Anzahl von Mechanismen wurden durch die Nukleosomen beschrieben kann in einer Weise manipuliert werden, die Ausführung bestimmter Prozesse erleichtern können – diese Mechanismen posttranslationaler Modifikation von Histon-Reste, ATP-abhängige Nukleosom-Remodeling und ATP-unabhängige Nukleosom Reorganisation umfassenund Montage / Demontage 2, 3.
Die Bäckerhefe Saccharomyces cerevisiae ist ein besonders leistungsfähiges Modellorganismus für das Verständnis der Histon – Funktion in Eukaryoten. Dies kann weitgehend auf dem hohen Grad der evolutionären Konservierung der Histon – Proteine in der gesamten Domäne Eukarya und amenability von Hefe von genetischen und biochemischen experimentelle Ansätze 4 auf eine Vielzahl zurückzuführen. Reverse genetische Ansätze in Hefe wurden weitgehend verwendet, um die Auswirkungen der spezifischen Histon-Mutationen zu verschiedenen Aspekten der Chromatin Biologie zu studieren. Für diese Arten von Experimenten ist es oft bevorzugt, Zellen zu verwenden, bei dem die mutanten Histone aus ihren nativen genomischen Loci exprimiert werden, als Ausdruck von autonomen Plasmide zu abnormal intrazellulären Spiegel von Histon-Proteinen (durch eine unterschiedliche Anzahl von Plasmiden in Zellen) führen kann, und gleichzeitige Veränderung der Chromatinstruktur engebungen, die letztlich die Interpretation der Ergebnisse durcheinander bringen kann.
Hier beschreiben wir eine PCR-basierte Technik, die zur gezielten Mutagenese von Histon-Gene in ihrer nativen genomischen Stellen ermöglicht, die keine Klonierungsschritt und führt zur Erzeugung der gewünschten Mutation (en) ohne Überbleibsel exogenen DNA-Sequenzen in das Genom erfordert. Diese Technik nutzt die effiziente homologe Rekombinationssystem in Hefe und gemeinsam hat mehrere Funktionen mit anderen ähnlichen Techniken , die von anderen Gruppen entwickelt – insbesondere der Delitto Perfetto, ortsspezifischen genomischen (SSG) Mutagenese und Klonierung freien PCR-basierte Allel Ersatzmethoden 5, 6, 7. Jedoch hat die Technik, die wir beschreiben, einen Aspekt, dass es besonders gut geeignet für die Mutagenese von Histon-Gene macht. In haploiden Hefezellen, ist jeder der vier Core-Histone durch zwei nicht-a codiertllelic und hoch homologe Gene: zum Beispiel wird Histon H3 durch die HHT1 und HHT2 Gene kodiert, und die offenen Leserahmen (ORFs) der beiden Gene sind mehr als 90% in – Sequenz identisch. Dieser hohe Grad an Homologie kann Experimente komplizieren spezifisch eine der beiden für die Mutagenese Histon-kodierenden Gene entworfen abzuzielen. Während oft die oben genannten Verfahren die Verwendung von mindestens einigen Sequenzen innerhalb des ORF des Zielgens erfordern homologe Rekombination zu treiben, beschreiben die Technik, die wir hier macht die Verwendung von Sequenzen, die die ORFs der Histon-Gene flankieren (die viel weniger Sequenzhomologie teilen) für die Rekombinationsschritt, Steigerung somit die Wahrscheinlichkeit einer erfolgreichen Ausrichtung der Mutagenese an den gewünschten Ort. Darüber hinaus sind die homologen Regionen, die Rekombination fahren kann sehr umfangreich sein, weiter zu einer effizienten gezielte homologe Rekombination beiträgt.
Die hohe Sequenzhomologie zwischen den zwei nicht allele Gene , die für jeden der vier Kern Histon – Proteine in haploiden S. cerevisiae – Zellen eine Herausforderung für die Forscher darstellen können , die wünschen speziell für die Mutagenese eines der beiden Gene abzuzielen. Zuvor Hefe Mutagenese Methodologien beschrieben, einschließlich der Delitto Perfetto, ortsspezifischen genomischen (SSG) Mutagenese und Klonierung freien PCR-basierten Allelaustausch Methoden 5,</sup…
The authors have nothing to disclose.
We thank Reine Protacio for helpful comments during the preparation of this manuscript. We express our gratitude to the National Science Foundation (grants nos. 1243680 and 1613754) and the Hendrix College Odyssey Program for funding support.
1 kb DNA Ladder (DNA standards) | New England BioLabs | N3232L | |
Agarose | Sigma | A5093-100G | |
Boric Acid | Sigma | B0394-500G | |
dNTP mix (10 mM each) | ThermoFisher Scientific | R0192 | |
EDTA solution (0.5M, pH 8.0) | AmericanBio | AB00502-01000 | |
Ethanol (200 Proof) | Fisher Scientific | 16-100-824 | |
Ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) | Sigma | E4884-500G | |
Lithium acetate dihydrate | Sigma | L6883-250G | |
MyCycler Thermal Cycler | BioRad | 170-9703 | |
Poly(ethylene glycol) (PEG) | Sigma | P3640-1KG | |
PrimeSTAR HS DNA Polymerase (high fidelity DNA polymerase) and 5X buffer | Fisher Scientific | 50-443-960 | |
Salmon sperm DNA solution | ThermoFisher Scientific | 15632-011 | |
Sigma 7-9 (Tris base, powder form) | Sigma | T1378-1KG | |
Sodium acetate trihydrate | Sigma | 236500-500G | |
Supra Sieve GPG Agarose (low metling temperature agarose) | AmericanBio | AB00985-00100 | |
Taq Polymerase and 10X Buffer | New England BioLabs | M0273X | |
Toothpicks | Fisher Scientific | S67859 | |
Tris-HCl (1M, pH 8.0) | AmericanBio | AB14043-01000 | |
a-D(+)-Glucose | Fisher Scientific | AC170080025 | for yeast media |
Agar | Fisher Scientific | DF0140-01-0 | for yeast media |
Peptone | Fisher Scientific | DF0118-07-2 | for YPD medium |
Yeast Extract | Fisher Scientific | DF0127-17-9 | for YPD medium |
4-aminobenzoic acid | Sigma | A9878-100G | for complete minimal dropout medium |
Adenine | Sigma | A8626-100G | for complete minimal dropout medium |
Glycine hydrochloride | Sigma | G2879-100G | for complete minimal dropout medium |
L-Alanine | Sigma | A7627-100G | for complete minimal dropout medium |
L-Arginine monohydrochloride | Sigma | A5131-100G | for complete minimal dropout medium |
L-Asparagine monohydrate | Sigma | A8381-100G | for complete minimal dropout medium |
L-Aspartic acid sodium salt monohydrate | Sigma | A6683-100G | for complete minimal dropout medium |
L-Cysteine hydrochloride monohydrate | Sigma | C7880-100G | for complete minimal dropout medium |
L-Glutamic acid hydrochloride | Sigma | G2128-100G | for complete minimal dropout medium |
L-Glutamine | Sigma | G3126-100G | for complete minimal dropout medium |
L-Histidine monohydrochloride monohydrate | Sigma | H8125-100G | for complete minimal dropout medium |
L-Isoleucine | Sigma | I2752-100G | for complete minimal dropout medium |
L-Leucine | Sigma | L8000-100G | for complete minimal dropout medium |
L-Lysine monohydrochloride | Sigma | L5626-100G | for complete minimal dropout medium |
L-Methionine | Sigma | M9625-100G | for complete minimal dropout medium |
L-Phenylalanine | Sigma | P2126-100G | for complete minimal dropout medium |
L-Proline | Sigma | P0380-100G | for complete minimal dropout medium |
L-Serine | Sigma | S4500-100G | for complete minimal dropout medium |
L-Threonine | Sigma | T8625-100G | for complete minimal dropout medium |
L-Tryptophan | Sigma | T0254-100G | for complete minimal dropout medium |
L-Tyrosine | Sigma | T3754-100G | for complete minimal dropout medium |
L-Valine | Sigma | V0500-100G | for complete minimal dropout medium |
myo-Inositol | Sigma | I5125-100G | for complete minimal dropout medium |
Uracil | Sigma | U0750-100G | for complete minimal dropout medium |
Ammonium Sulfate | Fisher Scientific | A702-500 | for complete minimal dropout medium |
Yeast Nitrogen Base | Fisher Scientific | DF0919-07-3 | for complete minimal dropout medium |
5-Fluoroorotic acid (5-FOA) | AmericanBio | AB04067-00005 | for 5-FOA medium |