Summary

Dérivation des cultures leptoméninge explants de Postmortem humaines donateurs cerveau

Published: January 21, 2017
doi:

Summary

Le protocole de culture leptoméninge explant de post-mortem du cerveau humain est un moyen techniquement robuste et simple pour obtenir des fibroblastes méningées fibronectine positifs dans les 6-8 semaines et cryoconservation environ 20-30000000 cellules.

Abstract

Même si des progrès considérables ont été accomplis dans la caractérisation clinique de la maladie de Parkinson, de nombreuses études indiquent que le diagnostic de la maladie de Parkinson n'a pas pathologiquement confirmé dans jusqu'à 25% de la maladie de Parkinson diagnostiquée cliniquement. Par conséquent, les tissus prélevés chez des patients cliniquement diagnostiqués avec la maladie de Parkinson idiopathique peut avoir un taux élevé d'erreur de diagnostic; par conséquent , des études in vitro à partir de ces tissus pour étudier la maladie de Parkinson comme un modèle pré – clinique peut devenir inutile.

En recueillant leptoméninge humains post – mortem avec un diagnostic neuropathologique confirmé de la maladie de Parkinson et caractérisé par la perte de cellules nigro et inclusions protéiques intracellulaires appelées corps de Lewy, on peut être certain que le parkinsonisme cliniquement observé est pas causée par un autre processus pathologique sous – jacent (par exemple , la tumeur, l' artériosclérose).

Ce protocole présents la dissection et la préparation des leptoméninge humains post-mortem pour la dérivation d'une culture de fibroblastes méningée. Cette procédure est robuste et a un taux de réussite élevé. Le défi de la culture est la stérilité que l'acquisition du cerveau est généralement pas réalisée dans des conditions stériles. Par conséquent, il est important de compléter le milieu de culture avec un cocktail de pénicilline, streptomycine et amphotéricine B.

La dérivation des fibroblastes méningées des cas d' autopsie confirmés de la maladie de Parkinson est la base pour la modélisation in vitro de la maladie de Parkinson. fibroblastes méningées apparaissent 3-9 jours après la préparation des échantillons et environ 20-30 millions de cellules peuvent être cryoconservés dans 6-8 semaines. La culture de fibroblastes méningée est homogène et les cellules expriment la fibronectine, un marqueur couramment utilisé pour identifier les méninges.

Introduction

Méninges se composent de trois membranes qui protègent le cerveau: la dure-mère-mère, arachnoïde et la pie. Plus récemment, il a été reconnu que les méninges jouent également un rôle important dans le développement du cerveau et du cerveau homéostasie 1. Méninges sont dérivées de cellules mésenchymateuses et dérivées de la crête neurale et de façon intéressante, il a été démontré que les cellules souches résidant dans les méninges peuvent donner naissance à des neurones in vitro et in vivo après transplantation 2, 3, 4. Les cultures méninges ont également été utilisées avec succès en tant que couches d'alimentation, car ils possèdent une activité inductrice dérivé des cellules stromales de la différenciation des cellules souches embryonnaires dans des neurones dopaminergiques 5. En outre, les leptoméninges ont le potentiel de se différencier en neurones directement, les astrocytes, les oligodendrocytes et dans des conditions ischémiques 6.

Pour ce protocole, les échantillons de meninges post-mortem humaines sont collectées à partir de l'arachnoïde et la pie, collectivement appelées les méninges, et sont achetés dans le cadre d'un don de cerveau humain à des fins de recherche. Dissection du cerveau est effectué dans les 24 h de la mort et l'échantillon de leptoméninge est placé dans un milieu de croissance à froid pour un traitement ultérieur dans le 6-8 suivant h comme illustré ici dans ce protocole.

Ce protocole décrit la dissection et la préparation d'échantillons de méninges humaines pour le développement de la culture de cellules de leptoméninge primaires patient. Le tissu est découpé en morceaux d'environ 25-30 3 mm x 3 mm carrés. Trois pièces sont placées dans chaque 6 puits revêtues de gélatine bien et maintient avec des lamelles de verre rondes. La dissection meninges prend environ 25-35 min. Le principal défi de cette culture est la stérilité comme le cerveau l'approvisionnement, le transport, et la dissection ne sont généralement pas réalisée dans des conditions stériles. Tonc, il est important de compléter le milieu de culture avec un cocktail de pénicilline, streptomycine et amphotéricine B et en utilisant des plats multi-puits pour la culture séparément des morceaux de tissu.

Excroissance des fibroblastes méningés se produit généralement dans la première semaine. Le support est changé tous les deux à trois jours jusqu'à ce que les cellules soient confluentes et les cellules sont repiquées par voie enzymatique. Les fibroblastes méningées sont cryoconservés à 1 million de cellules par mL / flacon dans les milieux de cryoconservation. Avec ce protocole, 20-30 millions de fibroblastes méningées peuvent être dérivées en 6-8 semaines pour la cryoconservation. Les applications en aval de ces fibroblastes méningées sont des cultures primaires pour la recherche sur la maladie, la différenciation neuronale directe ou dérivation de cellules souches pluripotentes induites à partir de la leptoméninge pour la compréhension des mécanismes de la maladie et pour le développement de médicaments.

Protocol

L'enregistrement cerveau don comprend la documentation par le déclarant de leur intention de faire un don. L'autorisation d'autopsie pour la récupération des tissus est fournie par le plus proche parent dans la mesure permise par la loi. Les études de recherche à l'aide de spécimens d'autopsie recueillies sont examinées par le comité d'examen institutionnel (IRB) pour assurer la conformité avec Health Insurance Portability and Accountability Act (HIPAA) règlements. <p class="jove_co…

Representative Results

Lorsque le protocole de traitement de leptoméninge a réussi, l'excroissance des fibroblastes méningés est d'abord observé trois à neuf jours après la dissection, bien que cela peut dépendre de la durée de l'intervalle post-mortem du cerveau. La figure 1 montre des cultures de fibroblastes méningées de quatre donneurs différents. La figure 1A montre une pièce tenue par une lamelle de verre (diagonale sombre) et fibroblaste excrois…

Discussion

Ce protocole décrit un protocole simple et robuste pour dériver une culture de fibroblastes méningée de leptoméninge post-mortem humains recueillies conjointement avec un don de cerveau. Il y a très peu de descriptions de protocoles pour dériver des cultures de cellules de matériel humain post-mortem. Deux études décrivent des cultures de fibroblastes 7, 8, peau dérivé 9, une étude décrit les échantillons <sup cl…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Development of this protocol was funded by private donations directed to the Parkinson’s Institute Brain Donation Program.

Materials

Corning Petri dishes Fisher Scientific 351029
Nunc 6-well plate Fisher Scientific 14-832-11
15-mm cover slips Fisher Scientific 12-545-83 15CIR-1D
Scalpels, sterile blade, No. 15 Miltex 4-415
Curved precision tip forceps Fisher Scientific 16-100-122
Serological pipettes Fisher Scientific 13-678-11E
Pasteur pipettes Fisher Scientific 22-230490
Gelatin Sigma G1890-100G
Phosphate Buffer Solution Fisher Scientific SH30264.02
Corning 500 mL filter unit Fisher Scientific 430770 Combine media components and filter.
Nunc Cell Culture Treated Flasks with Filter Caps, T175 cm2  Thermo Scientific 178883
Name Company Catalog Number Comments
Growth Media
Hyclone DMEM Fisher Scientific SH30081.02
Hyclone FBS Fisher Scientific SH30910.03
MEM Non-Essential Amino Acids Solution (100x) Thermo Fisher 11140-050
GlutaMAX Supplement (100x) Thermo Fisher 35050-061
Sodium Pyruvate (100 mM) Thermo Fisher 11360-070
Penicillin-Streptomycin (10,000 U/mL) Thermo Fisher 15140-122
Amphotericin B (Yellow Solution/250 µg/mL) Fisher Scientific BP264520
Bambanker Freeze 120 mL Fisher Scientific NC9582225
Name Company Catalog Number Comments
Fibronectin Staining
8 well chamber slides  Fisher Scientific 1256518
20% paraformaldehyde  Electron Microscopy Sciences 15713
Triton X-100  Sigma T8787
100% Glycerol  BioRad 9455
100% normal goat serum  Fisher Scientific 101098-382
Anti-Fibronectin antibody [F1] Abcam ab32419 1:300 dilution in blocking solution
Anti-SERPINH1 Sigma S5950-200ul 1:250 dilution in blocking solution
Anti-SOX2 Millipore MAB4343 1:100 dilution in blocking solution
Anti-Nestin Millipore MAB5326 1:200 dilution in blocking solution
Anti-TUJ1 Covance MMS-435P 1:1000 dilution in blocking solution
Alexa Fluor 488 anti-rabbit Thermo Fisher A11029 1:400 dilution in blocking solution; (green channel; Ex/Em2 495/519 nm) 
Alexa Fluor 555 anti-mouse Thermo Fisher A21424 1:400 dilution in blocking solution; (red channel; Ex/Em2 590/617 nm) 
Hoechst 33342 stain Thermo Fisher H3570 dilute to a final concentration of 1.0 μg/ml; (blue channel; Ex/Em2 358/461 nm) 
Suppliers are suggestions, similar products from alternative vendors can be used as well.

References

  1. Decimo, I., Fumagalli, G., Berton, V., Krampera, M., Bifari, F. Meninges: from protective membrane to stem cell niche. Am J Stem Cells. 1 (2), 92-105 (2012).
  2. Bifari, F., et al. Novel stem/progenitor cells with neuronal differentiation potential reside in the leptomeningeal niche. J Cell Mol Med. 13 (9B), 3195-3208 (2009).
  3. Bifari, F., et al. Meninges harbor cells expressing neural precursor markers during development and adulthood. Front Cell Neurosci. 9, 383 (2015).
  4. Decimo, I., Bifari, F., Krampera, M., Fumagalli, G. Neural stem cell niches in health and diseases. Curr Pharm Des. 18 (13), 1755-1783 (2012).
  5. Hayashi, H., et al. Meningeal cells induce dopaminergic neurons from embryonic stem cells. Eur J Neurosci. 27 (2), 261-268 (2008).
  6. Nakagomi, T., et al. Leptomeningeal-derived doublecortin-expressing cells in poststroke brain. Stem Cells Dev. 21 (13), 2350-2354 (2012).
  7. Hjelm, B. E., et al. Induction of pluripotent stem cells from autopsy donor-derived somatic cells. Neurosci Lett. 502 (3), 219-224 (2011).
  8. Hjelm, B. E., et al. In vitro-differentiated neural cell cultures progress towards donor-identical brain tissue. Hum Mol Genet. 22 (17), 3534-3546 (2013).
  9. Meske, V., Albert, F., Wehser, R., Ohm, T. G. Culture of autopsy-derived fibroblasts as a tool to study systemic alterations in human neurodegenerative disorders such as Alzheimer’s disease–methodological investigations. J Neural Transm (Vienna). 106 (5-6), 537-548 (1999).
  10. Bliss, L. A., et al. Use of postmortem human dura mater and scalp for deriving human fibroblast cultures. PLoS One. 7 (9), e45282 (2012).
  11. Sproul, A. A., et al. Generation of iPSC lines from archived non-cryoprotected biobanked dura mater. Acta Neuropathol Commun. 2, 4 (2014).
  12. Adler, C. H., et al. Low clinical diagnostic accuracy of early vs advanced Parkinson disease: clinicopathologic study. Neurology. 83 (5), 406-412 (2014).
  13. Hughes, A. J., Daniel, S. E., Kilford, L., Lees, A. J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 55 (3), 181-184 (1992).
  14. Hughes, A. J., Daniel, S. E., Lees, A. J. Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease. Neurology. 57 (8), 1497-1499 (2001).
  15. Langston, J. W., Schüle, B., Rees, L., Nichols, R. J., Barlow, C. Multisystem Lewy body disease and the other parkinsonian disorders. Nature Genetics. 47 (12), 1378-1384 (2015).
  16. Vangipuram, M., Ting, D., Kim, S., Diaz, R., Schüle, B. Skin punch biopsy explant culture for derivation of primary human fibroblasts. J Vis Exp. (77), e3779 (2013).
  17. Byers, B., et al. SNCA triplication Parkinson’s patient’s iPSC-derived DA neurons accumulate alpha-synuclein and are susceptible to oxidative stress. PLoS One. 6 (11), e26159 (2011).
  18. Sanders, L. H., et al. LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: reversal by gene correction. Neurobiol Dis. 62, 381-386 (2014).
  19. Beevers, J. E., Caffrey, T. M., Wade-Martins, R. Induced pluripotent stem cell (iPSC)-derived dopaminergic models of Parkinson’s disease. Biochem Soc Trans. 41 (6), 1503-1508 (2013).

Play Video

Cite This Article
Lee, K., Saetern, O. C., Nguyen, A., Rodriguez, L., Schüle, B. Derivation of Leptomeninges Explant Cultures from Postmortem Human Brain Donors. J. Vis. Exp. (119), e55045, doi:10.3791/55045 (2017).

View Video