We describe a protocol to identify key roles of host signaling molecules in lytic replication of a model herpesvirus, gamma herpesvirus 68 (γHV68). Utilizing genetically modified mouse strains and embryonic fibroblasts for γHV68 lytic replication, the protocol permits both phenotypic characterization and molecular interrogation of virus-host interactions in viral lytic replication.
In response to viral infection, a host develops various defensive responses, such as activating innate immune signaling pathways that lead to antiviral cytokine production1,2. In order to colonize the host, viruses are obligate to evade host antiviral responses and manipulate signaling pathways. Unraveling the host-virus interaction will shed light on the development of novel therapeutic strategies against viral infection.
Murine γHV68 is closely related to human oncogenic Kaposi’s sarcoma-associated herpesvirus and Epsten-Barr virus3,4. γHV68 infection in laboratory mice provides a tractable small animal model to examine the entire course of host responses and viral infection in vivo, which are not available for human herpesviruses. In this protocol, we present a panel of methods for phenotypic characterization and molecular dissection of host signaling components in γHV68 lytic replication both in vivo and ex vivo. The availability of genetically modified mouse strains permits the interrogation of the roles of host signaling pathways during γHV68 acute infection in vivo. Additionally, mouse embryonic fibroblasts (MEFs) isolated from these deficient mouse strains can be used to further dissect roles of these molecules during γHV68 lytic replication ex vivo.
Using virological and molecular biology assays, we can pinpoint the molecular mechanism of host-virus interactions and identify host and viral genes essential for viral lytic replication. Finally, a bacterial artificial chromosome (BAC) system facilitates the introduction of mutations into the viral factor(s) that specifically interrupt the host-virus interaction. Recombinant γHV68 carrying these mutations can be used to recapitulate the phenotypes of γHV68 lytic replication in MEFs deficient in key host signaling components. This protocol offers an excellent strategy to interrogate host-pathogen interaction at multiple levels of intervention in vivo and ex vivo.
Recently, we have discovered that γHV68 usurps an innate immune signaling pathway to promote viral lytic replication5. Specifically, γHV68 de novo infection activates the immune kinase IKKβ and activated IKKβ phosphorylates the master viral transcription factor, replication and transactivator (RTA), to promote viral transcriptional activation. In doing so, γHV68 efficiently couples its transcriptional activation to host innate immune activation, thereby facilitating viral transcription and lytic replication. This study provides an excellent example that can be applied to other viruses to interrogate host-virus interaction.
1. Mouse infection with γHV68
2. Determine γHV68 multi-step growth kinetics in mouse embryonic fibroblasts
3. Molecular dissection of γHV68 lytic replication in mouse embryonic fibroblasts
4. Generating recombinant γHV68 using bacterial artificial chromosome
The method described here is used to introduce mutations into a γHV68 gene that is involved in host-virus interaction.
5. Determine viral titer by a plaque assay
6. Representative Results:
Three representative figures are shown here, including γHV68 lytic replication in the lung of wild-type and Mavs-/- mouse10, γHV68 lytic replication phenotypes in mouse embryonic fibroblasts (MEF), and recombinant γHV68 carrying mutations within the phosphorylation sites that are modulated by the MAVS-dependent IKKβ. These three corroborating experiments constitute a scheme to define the roles of innate immune components in γHV68 lytic replication in vivo and ex vivo.
Figure 1. γHV68 loads in the lungs of Mavs+/+ and Mavs-/- mice. A) Two main innate signaling pathways downstream of MAVS. The MAVS adaptor molecule relays signaling from cytosolic RIG-I-like receptors to activate NFκB and interferon regulatory factors (IRFs) that, in turn, up-regulate the gene expression of proinflammatory cytokines and interferons. B) Mavs+/+ and Mavs-/- mice were infected with 40 PFU γHV68 intranasally and viral loads in the lung at indicated time points were determined by a plaque assay using NIH3T3 monolayer. Each symbol represents a mouse.
Figure 2. γHV68 lytic replication kinetics in mouse embryonic fibroblasts (MEFs). The lytic replication of γHV68 on Mavs+/+ and Mavs-/- MEFs was assessed by multi-step growth curves (A) and quantitative real-time PCR (B). For both experiments, equal number of MEFs and amount of γHV68 were used for viral infection at a multiplicity-of-infection (MOI) of 0.01. (A) Cells and supernatants were harvested at indicated time points and subject to a plaque assay to determine viral titers. (B) Total RNA was extracted from γHV68-infected MEFs and analyzed by quantitative real-time PCR with primers specific for selected lytic transcripts (RTA, ORF57, and ORF60).
Figure 3. The lytic replication kinetics of recombinant γHV68 carrying mutations within the RTA transactivation domain that abolish phosphorylation by IKKγ. (A) Multi-step growth curves of recombinant wild-type virus (γHV68.wt) and mutant virus (γHV68.mut) in Mavs+/+ and Mavs-/- MEFs cells (MOI=0.01). MEFs were infected with γHV68 at an MOI of 0.01. Cells and supernatants were harvested at indicated time points and viral titers were determined by a plaque assay using NIH 3T3 monolayer. (B) γHV68 RTA mRNA level in γHV68-infected NIH3T3 cells (MOI=0.01). At 30 h post-infection, total RNA was extracted from γHV68-infected NIH 3T3 cells and analyzed by quantitative real-time PCR.
In response to viral infection, the MAVS-dependent innate immune signaling pathways are activated to promote the production of antiviral inflammatory cytokines10-14. Using murine γHV68 as a model virus for human oncogenic Kaposi’s sarcoma-associated herpesvirus and Epstein-Barr virus3,4, we discovered that γHV68 usurps the MAVS-IKKβ pathway to promote viral lytic replication via transcriptional activation5. Employing genetically modified MEFs and techniques in molecular virology, this protocol allows the efficient identification of signaling components of a particular pathway that are critical for γHV68 lytic replication. As such, this protocol entails the in vivo infection, ex vivo lytic replication, and dissection of the innate immune signaling pathway. To delineate the molecular mechanism, additional procedures including the bacterial artificial chromosome to generate recombinant herpesvirus and molecular biology experiments are necessary. Additionally, knockout mouse strains and fibroblasts are key for these experiments. With a large number of knockout mouse strains available, this protocol will enable the molecular dissection of host signaling pathways and viral intervention thereof. In the event that knockout mice and MEFs are not available (e.g., due to lethality), RNAi/shRNA-mediated knockdown may be sought. Additional limitations of this protocol include: 1) crosstalk between signaling pathways, 2) overlapping functions of candidate viral factors, 3) potential lethal effect on γHV68 replication by mutations. Although this protocol was applied directly to identify roles of innate immune components in γHV68 lytic replication in particular, similar strategies can be used to define the important roles of a selected component in other host signaling pathways during viral infection in vivo and ex vivo.
It is important to note that our recombination approach in transfected cells bypasses the labor-intense steps required for identifying BAC recombinant in E.coli, permitting the efficient introduction of mutations into the gene-of-interest. Specifically, homologous recombination between BAC and PCR products containing designed mutations produces infectious BAC clones that, in turn, give rise to recombinant γHV68. However, this protocol relies on the essential gene and mutations that are not supposed to completely inactivate the virus. If mutations completely inactivate γHV68, transfections are not expected to generate recombinant virus. We realize that information learned from murine γHV68 may not apply identically to human KSHV and EBV. However, the strategies to dissect viral immune evasion and exploitation mechanisms may be applied to these human pathogens using cultured cells. Our findings derived from mouse infection with γHV68 thus will instruct us of designing better experiments to study human KSHV and EBV.
The authors have nothing to disclose.
The authors would like to thank Dr. James (Zhijian) Chen (UT Southwestern, Molecular Biology) for providing essential reagents, including the Mavs-/- mice, and Dr. Ren Sun (University of California-Los Angeles, Pharmacology and Molecular Medicine) for providing the bacterial artificial chromosome of γHV68 for this study.
Name of the reagent | Company | Catalogue number |
Lipofectamine 2000 | Invitrogen | 11668-019 |
Electro-MAX DH10B competent cells | Invitrogen | 18290-015 |
Methylcellulose | Sigma | M0512 |
POWERPREP HP Plasmid Miniprep System | OriGene | NP100004 |
POWERPREP HP Plasmid Midiprep System | OriGene | NP100006 |