Escherichia coli provoque une septicémie chez les nouveau-nés qui ingèrent la bactérie au moment de la naissance. Le processus impliqué dans la capacité d’E. coli à se déplacer des voies entériques à la circulation sanguine est mal compris. Ce modèle in vitro évalue la capacité des souches d’E. coli à traverser les cellules épithéliales intestinales.
Les nouveau-nés ingèrent des souches maternelles d’E. coli qui colonisent leur tractus intestinal au moment de l’accouchement. Les souches d’E. coli capables de se déplacer dans l’intestin envahissent la circulation sanguine du nouveau-né, provoquant une bactériémie potentiellement mortelle. La méthodologie présentée ici utilise des cellules épithéliales intestinales polarisées cultivées sur des inserts semi-perméables pour évaluer la transcytose d’isolats néonatals de bactériémie à E. coli in vitro. Cette méthode utilise la lignée cellulaire intestinale T84 établie qui a la capacité de se développer jusqu’à la confluence et de former des jonctions serrées et des desmosomes. Après avoir atteint la confluence, les monocouches T84 matures développent une résistance transépithéliale (TEER), qui peut être quantifiée à l’aide d’un voltmètre. Les valeurs TEER sont inversement corrélées avec la perméabilité paracellulaire des composants extracellulaires, y compris les bactéries, à travers la monocouche intestinale. Le passage transcellulaire des bactéries (transcytose), en revanche, ne modifie pas nécessairement les mesures TEER. Dans ce modèle, le passage bactérien à travers la monocouche intestinale est quantifié jusqu’à 6 heures après l’infection, et des mesures répétées de TEER sont effectuées pour surveiller la perméabilité paracellulaire. En outre, cette méthode facilite l’utilisation de techniques telles que l’immunomarquage pour étudier les changements structurels dans les jonctions serrées et d’autres protéines d’adhésion de cellule à cellule au cours de la transcytose bactérienne à travers l’épithélium polarisé. L’utilisation de ce modèle contribue à la caractérisation des mécanismes par lesquels E. coli néonatal transcytose à travers l’épithélium intestinal pour produire une bactériémie.
Escherichia coli est la cause la plus fréquente de septicémie précoce chez les nouveau-nés 1,2,3. Le taux de mortalité de la bactériémie néonatale à E. coli peut atteindre 40 %, et la méningite est une complication possible associée à de graves troubles neurodéveloppementaux2. L’ingestion de souches maternelles d’E. coli par le nouveau-né peut produire une bactériémie néonatale; Ce processus a été reproduit dans les modèles animaux 2,4. Une fois ingérées, les bactéries pathogènes voyagent de la lumière intestinale néonatale à travers la barrière intestinale et pénètrent dans la circulation sanguine, provoquant une septicémie. Les souches néonatales invasives d’E. coli qui produisent une bactériémie varient dans leur capacité à envahir les cellules épithéliales intestinales 1,5. Cependant, leur capacité à transcyser l’épithélium intestinal après l’invasion n’a pas été complètement caractérisée.
Ce modèle de transcytose intestinale est une méthode in vitro utile pour imiter le passage bactérien à travers l’épithélium intestinal. L’objectif global des méthodes présentées dans ce manuscrit est de comparer la capacité des isolats néonatals d’E. coli à transcyser l’épithélium intestinal. Le modèle décrit ici utilise des cellules T84, qui sont des cellules d’adénocarcinome intestinal humainimmortalisées 6,7. Les cellules T84 sont cultivées jusqu’à confluence sur une membrane semi-perméable avec deux compartiments séparés. La raison d’être de cette technique est que, comme cela se produit in vivo, ces cellules intestinales se polarisent et développent des jonctions serrées matures 6,8. Le côté en contact avec la membrane devient le côté basal. Le côté opposé des cellules devient le côté apical, ressemblant à la lumière intestinale où les agents pathogènes ingérés adhèrent et envahissent. La membrane transwell est perméable aux bactéries, mais les cellules intestinales polarisées forment des jonctions serrées, qui nuisent au mouvement paracellulaire bactérien9. Ainsi, cette méthode offre l’avantage d’un environnement in vitro contrôlé utilisant une lignée cellulaire humaine pour étudier le processus de transcytose bactérienne, y compris la voie transcellulaire. Alors que d’autres méthodes existent pour étudier la transcytose des bactéries à travers l’épithélium intestinal, la méthode transwell présentée ici offre une plus grande facilité et accessibilité. Des techniques alternatives, telles que celles utilisant des échantillons ex vivo installés dans des systèmes de chambres d’Ussing, sont disponibles. Cependant, ils utilisent des échantillons de tissus qui peuvent ne pas être facilement accessibles, en particulier si la recherche vise à étudier la physiologie humaine10. Les organoïdes intestinaux représentent un autre exemple d’alternative in vitro pour étudier les interactions hôte-bactérie11. Bien que les monocouches organoïdes puissent également être utilisées dans le système transwell pour étudier la transcytose bactérienne, elles nécessitent l’isolement et la croissance de cellules souches et l’utilisation de facteurs de croissance spécifiques pour induire la différenciation12. Ainsi, leur utilisation prend plus de temps et est associée à des coûts plus élevés par rapport à la méthode transwell décrite dans ce manuscrit.
L’évaluation du passage bactérien à travers l’épithélium intestinal à l’aide de ce système transwell in vitro a été réalisée avec succès pour divers agents pathogènes. Ces études ont montré l’utilité du système transwell utilisant des cellules T84 pour caractériser la transcytose des bactéries à travers l’épithélium intestinal polarisé13,14,15. Cependant, l’application de cette méthode transwell pour comparer la capacité de transcytose des souches néonatales d’E. coli productrices de bactériémie n’a pas été décrite en détail. Ce manuscrit fournit aux autres chercheurs un protocole transwell standard fiable et facile à utiliser et ne nécessitant pas de ressources trop coûteuses.
Pour comparer la capacité des souches néonatales invasives d’E. coli à transcyser l’épithélium intestinal, la face apicale de la monocouche épithéliale intestinale peut être infectée par un nombre connu de cellules bactériennes. Après l’incubation, le milieu sur la face basale de l’épithélium peut être recueilli et les bactéries quantifiées pour déterminer la quantité de transcytose bactérienne au fil du temps. Dans ce manuscrit, les méthodes présentées sont utilisées pour étudier la capacité de transcytose des souches cliniques néonatales d’E. coli récupérées chez des nouveau-nés hospitalisés pour bactériémie. Les critères d’inclusion pour la sélection de ces isolats cliniques néonatals pour les études de transcytose ont été publiés précédemment 1,2,16. Lorsque cette méthode est réalisée en utilisant différentes souches d’E. coli, leurs capacités de transcytose peuvent être comparées. Grâce à ce processus, le modèle de transcytose intestinale fournit des données précieuses pour caractériser les facteurs de virulence d’E. coli qui contribuent au processus en plusieurs étapes qui aboutit au développement de la bactériémie néonatale.
Cette méthode est dérivée des techniques utilisées en gastroentérologie et en maladies infectieuses20. Des modèles in vitro de la barrière épithéliale intestinale ont été utilisés pour élucider les mécanismes par lesquels le contenu luminal interagit avec cette composante pertinente de l’immunité innée 6,8. Les interactions hôte-pathogène de la bactérie invasive à E. coli néonatale ont également é…
The authors have nothing to disclose.
Ce travail a été soutenu par une bourse d’étudiant Sarah Morrison accordée par l’École de médecine de l’Université du Missouri-Kansas City à A.I.
10,000 U/ mL Penicillin/Streptomycin Mixture | Fisher Scientific | 15-140-122 | |
15 mL sterile conical tubes | MidSci | C15B | |
2 mL microcentrifuge tubes | Avant | AVSS2000 | |
50 mL sterile polypropylene conical tubes | Falcon | 352070 | |
Aspirator | Corning | 4930 | |
Biosafety Cabinets | Labconco | 30441010028343 | Three of these are used in the method: one for sterile tissue work, one for infected tissue work, and one for bacterial work. |
Centrifuge | Sorvall | Legend RT | |
Disposable inoculation loops | Fisherbrand | 22363605 | |
Dulbecco's Modified Eagle Medium (DMEM) | Gibco | 11965-084 | |
Epithelial Volt/Ohm Meter | World Precision Instruments | EVOM | |
Fetal Bovine Serum | Fisher Scientific | 10437028 | |
Ham's F-12 Nutrient Mixture | Gibco | 11765-047 | |
Hemacytometer | Sigma Aldrich, Bright Line | Z359629 | |
Incubator shaker | New Brunswick | Innova 4080 | |
Incubators | Thermo Scientific | 51030284 | Three of these are used in the method: one for sterile tissue culturing, one for infected tissue culturing, and one for bacterial incubation. |
Lysogeny broth | Difco | 244610 | |
Lysogeny broth agar | IBI Scientific | IB49101 | |
Nikon Eclipse TS2R Microscope | Nikon | ||
Spectrophotometer | Unico | 1100RS | |
T84 Intestinal Cells | American Tissue Culture Collection | CCL248 | |
Tissue culture inserts, with polyethylene trephthalate membrane, 3 µm pores, 24 well format | Falcon | 353096 | |
Tissue culture plate, 24 wells | Falcon | 353504 | |
Trypan blue stain | Fisher Scientific | T10282 |