Apresentamos uma tecnologia que utiliza o conjunto assistido pela capilaridade em uma plataforma microfluida para padronizar objetos microdimensionados suspensos em um líquido, como bactérias e coloides, em matrizes prescritas em um substrato de polidimetilsiloxano.
A padronização controlada de microrganismos em arranjos espaciais definidos oferece possibilidades únicas para uma ampla gama de aplicações biológicas, incluindo estudos de fisiologia microbiana e interações. No nível mais simples, a padronização espacial precisa dos microrganismos permitiria imagens confiáveis e de longo prazo de um grande número de células individuais e transformaria a capacidade de estudar quantitativamente interações micróbios dependentes da distância. Mais exclusivamente, acoplamento preciso da padronização espacial e controle total sobre as condições ambientais, como oferecido pela tecnologia microfluida, forneceria uma plataforma poderosa e versátil para estudos unicelulares em ecologia microbiana.
Este artigo apresenta uma plataforma microfluidica para produzir padrões versáteis e definidos pelo usuário de microrganismos dentro de um canal microfluido, permitindo acesso óptico completo para monitoramento de longo prazo e de alto rendimento. Esta nova tecnologia microfluida é baseada na montagem de partículas assistidas pela capilaridade e explora as forças capilares decorrentes do movimento controlado de uma suspensão evaporando dentro de um canal microfluido para depositar objetos microsized individuais em uma matriz de armadilhas microfabricadas em um substrato polidimetilsiloxano (PDMS). Deposições sequenciais geram o layout espacial desejado de objetos únicos ou múltiplos de micro-tamanho, ditados unicamente pela geometria das armadilhas e pela sequência de enchimento.
A plataforma foi calibrada usando partículas coloidais de diferentes dimensões e materiais: provou ser uma ferramenta poderosa para gerar diversos padrões coloidais e realizar a funcionalidade superficial de partículas presas. Além disso, a plataforma foi testada em células microbianas, utilizando células Escherichia coli como bactéria modelo. Milhares de células individuais foram padronizadas na superfície, e seu crescimento foi monitorado ao longo do tempo. Nesta plataforma, o acoplamento da deposição unicelular e da tecnologia microfluidica permite tanto a padronização geométrica de microrganismos quanto o controle preciso das condições ambientais. Assim, abre uma janela para a fisiologia de micróbios únicos e a ecologia das interações micróbios-micróbios, como mostrado por experimentos preliminares.
A padronização espacial de microrganismos únicos, particularmente dentro de arenas experimentais que permitem o controle total sobre as condições ambientais, como dispositivos microfluidos, é altamente desejável em uma ampla gama de contextos. Por exemplo, organizar microrganismos em matrizes regulares permitiria a imagem precisa de um grande número de células individuais e o estudo de seu crescimento, fisiologia, expressão genética em resposta a estímulos ambientais e suscetibilidade de medicamentos. Também permitiria estudar interações célula-células de particular interesse em pesquisa em comunicação celular (por exemplo, sensoriamento de quórum), alimentação cruzada (por exemplo, simbiose alga-bacteriana) ou antagonismo (por exemplo, alopatia), com controle total sobre a localização espacial das células em relação umas às outras. Estudos de fisiologia e evolução celular1, estudos de interação célula-célula2, triagem de diferenciação fenotípica3, monitoramento ambiental4 e triagem de medicamentos5 estão entre os campos que podem se beneficiar muito de uma tecnologia capaz de alcançar essa análise quantitativa unicelular.
Várias estratégias para isolar e manusear células únicas têm sido propostas nos últimos anos, desde armadilhas ópticas holográficas6 e métodos heterogêneos de funcionalização de superfície7,8,9,10 até quimiostats11 unicelulares e microfluidos de gotícula12. Esses métodos são tecnicamente muito exigentes ou afetam a fisiologia celular e não fornecem uma plataforma de alto rendimento para padronizar micróbios que podem ser estudados por longos períodos, garantindo resolução unicelular, acesso óptico completo e controle sobre as condições ambientais. O objetivo deste artigo é descrever uma plataforma para padronizar bactérias com precisão micrométrica em arranjos espaciais prescritos em uma superfície PDMS através de montagem assistida por capilaridade. Esta plataforma permite uma padronização espacial precisa e flexível dos micróbios e permite acesso óptico completo e controle sobre as condições ambientais, graças à sua natureza microfluidica.
A tecnologia por trás dessa plataforma é uma tecnologia de montagem desenvolvida nos últimos anos, chamada sCAPA13,14,15 (conjunto de partículas assistidas por capilaridade sequencial) que foi integrada em uma plataforma microfluida16. O menisco de uma gotícula líquida evaporando, enquanto recua sobre um substrato de polidimimetilsiloxano padronizado (PDMS) dentro de um canal microfluido, exerce forças capilares que prendem as partículas coloidais individuais suspensas no líquido em poços micrométricos microfrágidos no substrato (Figura 1A). As partículas suspensas são primeiro transportadas para a interface ar-líquido por correntes convectivas e, em seguida, colocadas nas armadilhas por capilaridade. Forças capilares exercidas pelo ato de menisco em movimento em maior escala em comparação com as forças envolvidas nas interações de partículas.
Assim, o mecanismo de montagem não é influenciado pelo material, dimensões e propriedades superficiais das partículas. Parâmetros como concentração de partículas, velocidade do menisco, temperatura e tensão superficial da suspensão são os únicos parâmetros que influenciam o rendimento do processo de padronização. O leitor pode encontrar uma descrição detalhada da influência dos parâmetros acima mencionados no processo de padronização em 13,14,15. Na tecnologia sCAPA original13,14,15, o processo de padronização coloidal foi realizado em um sistema aberto e exigiu um estágio piezoelétrico de alta precisão para conduzir a suspensão através do modelo. Esta plataforma explora uma estratégia diferente e permite que a padronização seja realizada com equipamentos padrão geralmente utilizados em microfluidos em ambiente controlado, minimizando assim os riscos de contaminar as amostras.
Esta plataforma microfluida foi primeiramente otimizada em partículas coloidais para criar matrizes regulares de partículas inertes e, em seguida, aplicada com sucesso em bactérias. Ambas as plataformas microfluídicas estão descritas neste artigo (Figura 1B,C). A maioria das etapas preparatórias e os equipamentos experimentais descritos no protocolo são comuns para as duas aplicações (Figura 2). Relatamos padronização coloidal para demonstrar que a técnica pode ser usada para realizar múltiplas deposições sequenciais na mesma superfície para criar padrões complexos e multimateriais. Em particular, uma única partícula foi depositada por armadilha para cada passo para formar matrizes coloidais com uma geometria e composição específicas, ditadas unicamente pela geometria e sequência de enchimento das armadilhas. Quanto à padronização bacteriana, são descritos depoimentos únicos, resultando em uma bactéria sendo depositada por armadilha. Uma vez que as células são padronizadas na superfície, o canal microfluido é lavado com meio para promover o crescimento bacteriano, a etapa preliminar de qualquer estudo unicelular.
A plataforma microfluida descrita aqui permite a padronização de objetos micro-tamanhos, como coloides e bactérias, em arranjos espaciais prescritos em um substrato PDMS. O controle total sobre as condições ambientais oferecidos pelos microfluidos e a capacidade de padronizar células com precisão micrométrica concedida pela tecnologia sCAPA torna-a uma plataforma muito promissora para futuros estudos de fisiologia e ecologia.
Nos experimentos apresentados neste trabalho, o mestre de si…
The authors have nothing to disclose.
Os autores reconhecem o apoio da bolsa SNSF PRIMA 179834 (à E.S.), uma Bolsa de Pesquisa ETH ETH-15 17-1 (R. S.), e um Prêmio de Investigação da Fundação Gordon e Betty Moore sobre Simbiose Microbiana Aquática (grant GBMF9197) (R. S.). Os autores agradecem ao Dr. Miguel Angel Fernandez-Rodriguez (Universidade de Granada, Espanha) pela imagem sem de bactérias e pelas discussões perspicazes. Os autores agradecem ao Dr. Jen Nguyen (Universidade da Colúmbia Britânica, Canadá), Dr. Laura Alvarez (ETH Zurique, Suíça), Cameron Boggon (ETH Zürich, Suíça) e Dr. Fabio Grillo pelas discussões perspicazes.
Alcatel AMS 200SE I-Speeder | Alcatel Micro Machining System | deep reactive ion exchange system | |
Alconox | detergent | ||
AZ400K developer | MicroChemicals | AZ400K | |
BD 10 mL Syringe (Luer-Lock) | BD | 300912 | used to flush fresh Lysogeny broth into the microfluidic channel |
Box Incubator | Life Imaging Services | used to ensure a uniform and constant temperature in the channel | |
Centrifuge | Eppendorf | 5424R | used to replace the overnight media with fresh minimal media |
Centrifuge vial | Eppendorf | 30120086 | 1.5 mL |
CETONI Base 120 | CETONI GmbH | syringe pump | |
Fluorescent PS particles of diameter 0.98 µm (red) | microParticles GmbH | PS-FluoRed-Fi267 | |
Fluorescent PS particles of diameter 1.08 µm (green) | microParticles GmbH | PS-FluoGreen-Fi182 | |
Fluorescent PS particles of diameter 2.07 µm (green) | microParticles GmbH | PS-FluoGreen-Fi183 | |
Fluorescent PS particles of diameter 2.08 µm (red) | microParticles GmbH | PS-FluoRed-Fi180 | |
Gigabatch 310 M | PVA TePla | used to plasma treat a 10 cm silicon wafer | |
H401-T-CONTROLLER | Okolab | controller of the heated glass plate | |
H601-NIKON-TS2R-GLASS | Okolab | heated glass plate | |
Heidelberg DWL 2000 | Heidelberg Instruments | UV direct laser writer | |
Insulin syringes, U 100, with luer | Codan Medical ApS | CODA621640 | 1 mL syringe used to withdraw the liquid suspension during the patterning process |
Klayout | Opensource | used to design the features on the silicon master | |
LB Broth, Miller (Luria-Bertani) | Fisher Scientific | 244610 | Lysogeny broth flushed into the microfluidic channel |
Masterflex transfer tubing | Masterflex | HV-06419-05 | 0.020'' ID, 0.06'' OD |
MOPS (10x) | Teknova | M2101 | diluted tenfold with milliQ water and used to replace the overnight medium |
Nikon Eclipse Ti2 | Nikon Instruments | microscope | |
openSCAD | Opensource | used to design the mold | |
OPTIspin SB20 | ATM group | 51-0002-01-00 | spin developer |
Plasma chamber Zepto | Diener Electronic | ZEPTO-1 | used to plasma treat the template and microchannel to bond them |
Positive photoresist AZ1505 | MicroChemicals | AZ1505 | |
Potassium phosphate dibasic | Sigma Aldrich | P3786 | added to MOPS 1x |
Prusa curing and Washing machine CW1S | Prusa | used to ensure all polymer is cured and uncured polymer is removed from the mold | |
Prusa Resin – Tough | Prusa Research a.s. | UV photosensitive 405nm liquid resin for 3D printing | |
Prusa SL1 3d printer | Prusa | used to print the mold | |
Scale | VWR-CH | 611-2605 | used to weight PDMS mixture |
Silicon wafer (10 cm) | Silicon Materials Inc. | N/Phos <100> 1-10 Ω cm | |
Süss MA6 Mask aligner | SUSS MicroTec Group | used to align the chrome-glass mask and the substrate, and expose the substrate | |
Sylgard 184 | Dow Corning | silicone elastomer kit; curing agent | |
Techni Etch Cr01 | Technic | chromium etchant | |
Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane | Sigma Aldrich | 448931 | used to silianize the 3D printed mold |
TWEEN 20 | Sigma Aldrich | P1379 | used to ensure an optimal receding contact angle during the patterning process |
Veeco Dektak 6 M | Veeco | profilometer | |
VTC-100 Vacuum Spin Coater | MTI corporation | vacuum spin coater |