Wir beschreiben die Analyse eines kontinuierlichen funktionellen Nahinfrarot-Spektroskopie-Experiments mit einem Blockdesign mit einer sensomotorischen Aufgabe. Um die Zuverlässigkeit der Datenanalyse zu erhöhen, verwendeten wir das qualitative allgemeine lineare modellbasierte statistische parametrische Mapping und die vergleichenden hierarchischen Mischmodelle für Mehrkanalmodelle.
Neuroimaging-Studien spielen eine zentrale Rolle bei der Beurteilung von prä- vs. postinterventionellen neurologischen Erkrankungen wie rehabilitation und chirurgischer Behandlung. Unter den vielen Neuroimaging-Technologien, die zur Messung der Gehirnaktivität verwendet werden, ermöglicht die funktionelle Nahinfrarotspektroskopie (fNIRS) die Bewertung dynamischer kortikaler Aktivitäten durch Messung der lokalen Hämoglobinspiegel ähnlich der funktionellen Magnetresonanztomographie (fMRT). Aufgrund der geringeren körperlichen Einschränkung in fNIRS können auch mehrere Varianten sensomotorischer Aufgaben bewertet werden. Viele Labore haben verschiedene Methoden zur fNIRS-Datenanalyse entwickelt; Trotz der Tatsache, dass die allgemeinen Prinzipien die gleichen sind, gibt es keine universell standardisierte Methode. Hier stellen wir die qualitativen und vergleichenden Analysemethoden von Daten aus einem Mehrkanal-fNIRS-Experiment unter Verwendung eines Blockdesigns vor. Für die qualitative Analyse verwendeten wir eine Software für NIRS als massenunivariariaten Ansatz, der auf dem verallgemeinerten linearen Modell basiert. Die NIRS-SPM-Analyse zeigt qualitative Ergebnisse für jede Sitzung, indem der aktivierte Bereich während der Aufgabe visualisiert wird. Darüber hinaus kann der nicht-invasive dreidimensionale Digitizer verwendet werden, um die fNIRS-Kanalpositionen relativ zum Gehirn abzuschätzen. Um die NIRS-SPM-Ergebnisse zu bestätigen, kann die Amplitude der durch die sensomotorische Aufgabe induzierten Veränderungen des Hämoglobinspiegels statistisch analysiert werden, indem die Daten aus zwei verschiedenen Sitzungen (vor und nach der Intervention) desselben Studienteilnehmers mit einem mehrkanaligen hierarchischen Mischmodell verglichen werden. Mit unseren Methoden kann die Prä- vs. Post-Interventionsanalyse bei einer Vielzahl von neurologischen Störungen wie Bewegungsstörungen, zerebrovaskulären Erkrankungen und neuropsychiatrischen Störungen gemessen werden.
Die Neurorehabilitation spielt eine wichtige Rolle bei der funktionellen Erholung nach sensomotorischen Störungen. Um die Mechanismen der neuroplastizitätsassoziierten funktionellen Erholung zu klären, wurden verschiedene Neuroimaging-Technologien wie die funktionelle Magnetresonanztomographie (fMRT), die Positronenemissionstomographie (PET), die Elektroenzephalographie (EEG) und die funktionelle Nahinfrarotspektroskopie (fNIRS) eingesetzt. Unterschiedliche Bildgebungsmodalitäten haben unterschiedliche Vor- und Nachteile. Obwohl die fMRT das typischste Gerät ist, wird sie von Magnetfeldern beeinflusst, hat hohe Kosten, hohe physikalische Einschränkungen und begrenzte sensomotorische Aufgaben1,2,3,4. Das fNIRS-Gerät zeichnet sich als nichtinvasives optisches Neuroimaging aus und hat eine relativ geringere räumliche Auflösung, aber es hat eine bessere zeitliche Auflösung als fMRI4. fNIRS eignet sich zur Überprüfung von Behandlungseffekten, da es die Effekte vor und nach der Intervention vergleicht, dynamische motorische Aufgaben hat, tragbar ist und in natürlichen Umgebungen besser funktioniert als fMRT1,2,4. Es wurde berichtet, dass NIRS in den Bereichen zerebrovaskuläre Erkrankungen, epileptische Störungen, schwere Hirnverletzungen, Parkinson-Krankheit und kognitive Beeinträchtigung besser geeignet ist1,5. In Bezug auf sensomotorische Aufgaben ist es weit verbreitet in Gang und Stehbalance6,7,8, Funktion der oberen Gliedmaßen (Handgreifen, Fingerklopfen)8,9, komplexes motorisches Training10,11, Robotik12,13,14,15und Gehirn-Computer-Schnittstelle16,17,18. Das fNIRS basiert auf den Prinzipien der optischen Neurobildgebung und der neurovaskulären Kopplung, die kortikale Stoffwechselaktivität, erhöhten Blutfluss und folglich kortikale Aktivität als sekundäre Signale messen19. Es wurde berichtet, dass fNIRS-Signale starke Korrelationen mit Signalen der blutsauerstoffgehaltsabhängigen fMRTaufweisen 20. Ein kontinuierlicher fNIRS verwendet das modifizierte Beer-Lambert-Gesetz, um die Veränderungen der kortikalen Konzentrationen von sauerstoffreichem Hämoglobin (HbO2) und desoxygeniertem Hämoglobin (HHb) basierend auf gemessenen Änderungen der breitbandigen Nahinfrarot-Lichtdämpfung21,22zu bestimmen. Da es nicht möglich war, den differentiellen Weglängenfaktor (DPF) mit dem kontinuierlichen NIRS-System zu messen,nahmenwir an, dass der DPF konstant war und dass Hämoglobinsignaländerungen in beliebigen Einheiten von Millimolmillimeter (mM x mm)2,18bezeichnet wurden.
Die fNIRS-Experimente müssen die am besten geeigneten Methoden auswählen, einschließlich der Sondeneinstellungen, der Versuchsdesigns und der Analysemethoden. In Bezug auf die Sondeneinstellung ist die internationale 10-20-Methode, die in der EEG-Messung verwendet wird, der Von vielen Forschern in der Neuroimaging verwendet wird. In den letzten Jahren wurden Koordinateneinstellungen basierend auf dem Standardgehirn auf der Grundlage von Koordinaten des Montreal Neurological Institute (MNI) verwendet. Das Experiment verwendet ein Blockdesign, das im Allgemeinen für sensomotorische Aufgaben verwendet wird, und ein ereignisbezogenes Design. Dies ist eine Methode zum Vergleich von Veränderungen der Hämoglobinkonzentration in Ruhe und während der Aufgaben; DieHbO2-Konzentration steigt und die HHb-Konzentration nimmt mit Veränderungen des zerebralen Blutflusses ab, die mit aufgabenabhängiger kortikaler Aktivität verbunden sind. Obwohl es verschiedene Analysemethoden gibt, ermöglicht die freie Software NIRS-SPM eine Analyse ähnlich dem statistischen parametrischen Mapping (SPM) der fMRT. Die Behandlung von NIRS-Daten verwendet einen massenunivariariaten Ansatz, der auf dem allgemeinen linearen Modell (GLM) basiert. Bei der Durchführung einer aufgabenabhängigen Gehirnaktivitätsanalyse können die fNIRS-Messungen durch evozierte oder nicht evozierte neuronale Aktivität und systemische physiologische Interferenzen (Herzfrequenz, Blutdruck, Atemfrequenz und Aktivität des autonomen Nervensystems) im zerebralen und extrazerebralen Kompartiment beeinflusst werden23. Daher sind Voranalyseverarbeitung, Filterung, Wavelet-Konvertierung und Hauptkomponentenanalyse nützlich23. In Bezug auf Filterung und Artefakte der Datenverarbeitung mit dem NIRS-SPM wurden Tiefpassfilterung9 und die Wavelet-Beschreibungslänge (Wavelet-MDL)24 Detrending verwendet, um die Bewegung oder andere Rausch-/Artefaktquellen zu überwinden. Einzelheiten zu dieser Analysemethode finden Sie im Bericht von Ye et al.25. Obwohl es Berichte gibt, die nur SPM verwenden, handelt es sich nur um einen qualitativen Index durch Bildanalyse, und aufgrund der geringen räumlichen Auflösung von NIRS ist bei der Gruppenanalyse äußerste Vorsicht geboten. Darüber hinaus sollten bei konstantem DPF keine numerischen Vergleiche zwischen Kanälen und Individuen durchgeführt werden, sondern der Unterschied in den Änderungen in jedem Kanal kann überprüft werden. Basierend auf den oben genannten Bedingungen haben wir zur Ergänzung der NIRS-SPM-Gruppenanalyseergebnisse die ursprüngliche Analysemethode für die Mehrkanalanalyse verwendet, nachdem wir die Genauigkeit der räumlichen Registrierung verbessert haben. Diese Mehrkanalanalyse verglich die Amplitude der Änderung derHbO2- und HHb-Spiegel zwischen den Ruhe- und On-Task-Perioden an jedem Kanal vor und unmittelbar nach der Behandlung unter Verwendung hierarchischer Mischmodelle mit festen Interventionen (vor oder nach), festen Perioden (Ruhe oder On-Task) und zufälligen individuellen Effekten.
Auf diese Weise gibt es mehrere fNIRS-Mess- und Analysemethoden; es wurde jedoch keine Standardmethode festgelegt. In diesem Artikel stellen wir unsere Methoden vor, qualitative GLM-basierte statistische parametrische Kartierung und das vergleichende mehrstufige hierarchische Mischmodell, um Daten aus einem Mehrkanal-fNIRS-Experiment von Vor- vs. Post-Intervention unter Verwendung eines Blockdesigns mit sensomotorischen Aufgaben zu analysieren.
In unserer Gruppe analytische Methoden für fNIRS haben wir neben der Durchführung einer bildgebenden Analysemethode durch qualitative t-statistischeMappings auch Pre- vs. Post-Intervention (robotergestützte Übung) mit der vergleichenden Mehrkanalanalyse verglichen. Für die qualitative Analyse verwendeten wir die NIRS-SPM-Software als massenunivariaten Ansatz auf Basis des verallgemeinerten linearen Modells. Die NIRS-SPM-Analyse zeigt qualitative Ergebnisse jeder Sitzung, indem der aktivierte Bereich währen…
The authors have nothing to disclose.
Diese Arbeit wurde teilweise von der Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (C) 18K08956 und einem Fonds des Central Research Institute der Fukuoka University (Nr. 201045) unterstützt.
3D-digitizer software | TOPCON | – | NS-1000 software ver.1.50 |
NIRS system | Shimadzu | – | FOIRE-3000 |
Robot | CYBERDYNE | – | Single-joint type Hybrid Assitive Limb (HAL-SJ) |