Описан анализ непрерывно-волнового функционального эксперимента по ближней инфракрасной спектроскопии с использованием блочной конструкции с сенсомоторной задачей. Для повышения достоверности анализа данных мы использовали качественное общее линейное статистическое параметрическое отображение на основе модели и сравнительные иерархические смешанные модели для многоканальных каналов.
Исследования нейровизуализации играют ключевую роль в оценке пред- и постинтервентивных неврологических состояний, таких как реабилитация и хирургическое лечение. Среди многих технологий нейровизуализации, используемых для измерения активности мозга, функциональная ближняя инфракрасная спектроскопия (fNIRS) позволяет оценивать динамическую активность коры путем измерения локальных уровней гемоглобина, аналогичных функциональной магнитно-резонансной томографии (фМРТ). Кроме того, из-за меньшего физического ограничения в fNIRS, можно оценить несколько вариантов сенсомоторных задач. Многие лаборатории разработали несколько методов анализа данных фНИРС; однако, несмотря на то, что общие принципы одинаковы, универсально стандартизированного метода не существует. Здесь представлены качественные и сравнительные аналитические методы данных, полученных из многоканального эксперимента fNIRS с использованием блочного проектирования. Для качественного анализа мы использовали программное обеспечение для NIRS в качестве массово-одномерной модели, основанной на обобщенной линейной модели. Анализ NIRS-SPM показывает качественные результаты для каждого сеанса, визуализируя активированную область во время выполнения задачи. Кроме того, неинвазивный трехмерный дигитайзер может быть использован для оценки местоположения канала fNIRS относительно мозга. Чтобы подтвердить результаты NIRS-SPM, амплитуда изменений уровней гемоглобина, индуцированных сенсомоторной задачей, может быть статистически проанализирована путем сравнения данных, полученных из двух разных сеансов (до и после вмешательства) одного и того же субъекта исследования с использованием многоканальной иерархической смешанной модели. Наши методы могут быть использованы для измерения анализа до и после вмешательства при различных неврологических расстройствах, таких как двигательные расстройства, цереброваскулярные заболевания и нервно-психические расстройства.
Нейрореабилитация играет важную роль в функциональном восстановлении после сенсомоторных нарушений. Для уточнения механизмов функционального восстановления, связанного с нейропластичностью, были использованы различные технологии нейровизуализации, такие как функциональная магнитно-резонансная томография (фМРТ), позитронно-эмиссионная томография (ПЭТ), электроэнцефалография (ЭЭГ) и функциональная ближняя инфракрасная спектроскопия (фНИРС). Различные методы визуализации имеют разные преимущества и недостатки. Хотя фМРТ является наиболее типичным устройством, на него воздействуют магнитные поля, имеет высокую стоимость, высокую физическую ограниченность и ограничены сенсомоторные задачи1,2,3,4. Устройство fNIRS выделяется как неинвазивная оптическая нейровизуализация и имеет относительно более низкое пространственное разрешение, но оно имеет лучшее временное разрешение, чем фМРТ4. fNIRS подходит для проверки эффектов лечения, поскольку он сравнивает эффекты до и после вмешательства, имеет динамические двигательные задачи, является портативным и функционирует больше в естественных условиях, чем фМРТ1,2,4. Сообщается, что NIRS более подходит в областях цереброваскулярных заболеваний, эпилептических расстройств, тяжелой черепно-мозговой травмы, болезни Паркинсона и когнитивныхнарушений 1,5. Что касается сенсомоторных задач, то он широко используется в походке и стоячемравновесии6,7,8,функции верхних конечностей (хватание рукой, постукивание пальцем)8,9,комплексная тренировка двигательных навыков10,11,робототехника12,13,14,15и мозг-компьютерный интерфейс16,17,18. fNIRS основан на принципах оптической нейровизуализации и нейрососудистой связи, которые измеряют кортикальные метаболические активности, увеличение кровотока и, следовательно, кортикальной активности в качестве вторичных сигналов19. Сообщалось, что сигналы fNIRS имеют сильную корреляцию с сигналами крови, зависящей от уровня кислорода fMRI20. Непрерывноволновый fNIRS использует модифицированный закон Бира-Ламберта для определения изменений уровней концентрации кислородированного гемоглобина (HbO2)и дезоксигенированного гемоглобина (HHb) кортикальной концентрации на основе измеренных изменений широкополосного затухания света в ближнем инфракрасном диапазоне21,22. Поскольку было невозможно измерить дифференциальный коэффициент длины пути (DPF) с помощью непрерывно-волновой системы NIRS, мы предположили, что DPF является постоянным и что изменения сигнала гемоглобина обозначаются в произвольных единицах миллимол-миллиметр(мМ хмм)2,18.
Эксперименты fNIRS должны выбрать наиболее адекватные методы, включая настройки зонда, проекты экспериментов и методы анализа. Что касается настройки зонда, международный метод 10-20, используемый в измерении ЭЭГ, является стандартом установки, используемым многими исследователями в нейровизуализации. В последние годы используются координатные установки на основе стандартных координат мозга на основе координат Монреальского неврологического института (MNI). В эксперименте используется блочный дизайн, обычно используемый для сенсомоторных задач, и дизайн, связанный с событиями. Это метод сравнения изменений концентрации гемоглобина в состоянии покоя и во время выполнения заданий; Уровни концентрации HbO2 увеличиваются, а уровни концентрации HHb уменьшаются с изменениями мозгового кровотока, связанными с целевой кортикальной активностью. Хотя существуют различные методы анализа, бесплатное программное обеспечение NIRS-SPM позволяет проводить анализ, аналогичный статистическому параметрическому отображению (SPM) фМРТ. При обработке данных NIRS используется массово-одномерный подход, основанный на общей линейной модели (GLM). При выполнении анализа активности мозга, зависящего от задачи, на измерения fNIRS могут влиять вызванная или невызыковая нейронная активность и системные физиологические вмешательства (частота сердечных сокращений, артериальное давление, частота дыхания и активность вегетативной нервной системы) в мозговом и внемозговом отделе23. Поэтому предварительная обработка анализа, фильтрация, вейвлет-преобразование и анализ главных компонентовполезны23. Что касается фильтрации и артефактов обработки данных с использованием NIRS-SPM, то для преодоления движения или других источников шума/артефакта использовались низкополосная фильтрация9 и длина минимального описания вейвлета (Wavelet-MDL)24. Для получения подробной информации об этом аналитическом методе обратитесь к отчету Ye et al.25. Хотя существуют отчеты, использующие только SPM, это только качественный индекс анализа изображений, и из-за низкого пространственного разрешения NIRS требуется крайняя осторожность для группового анализа. Более того, когда DPF полен, числовые сравнения между каналами и отдельными лицами не должны выполняться, но разница в изменениях в каждом канале может быть проверена. Исходя из вышеуказанных условий, для дополнения результатов группового анализа NIRS-SPM мы использовали оригинальный метод анализа для многоканального анализа после повышения точности пространственной регистрации. Этот многоканальный анализ сравнивал амплитуду изменения уровней HbO2 и HHb между периодами покоя и выполнения задачи на каждом канале до и сразу после лечения с использованием иерархических смешанных моделей с фиксированными вмешательствами (до или после), фиксированными периодами (отдых или на задаче) и случайными индивидуальными эффектами.
Таким образом, существует несколько методов измерения и анализа fNIRS; однако никакого стандартного метода не установлено. В данной работе мы представляем наши методы, качественное статистическое параметрическое отображение на основе GLM и сравнительную многоуровневую иерархическую смешанную модель, для анализа данных, полученных из многоканального эксперимента fNIRS до и после вмешательства с использованием блочной конструкции с сенсомоторными задачами.
В наших групповых аналитических методах для fNIRS, в дополнение к выполнению аналитического метода визуализации с помощью качественных t-статистических отображений, мы сравнили до и после вмешательства (роботизированное упражнение) с использованием сравнительного многоканального…
The authors have nothing to disclose.
Эта работа была частично поддержана Грантом Японского общества содействия развитию науки (JSPS) на научные исследования (C) 18K08956 и фондом Центрального научно-исследовательского института Университета Фукуока (No 201045).
3D-digitizer software | TOPCON | – | NS-1000 software ver.1.50 |
NIRS system | Shimadzu | – | FOIRE-3000 |
Robot | CYBERDYNE | – | Single-joint type Hybrid Assitive Limb (HAL-SJ) |