Мы вводим полуавтоматический протокол для анализа формы на структурах мозга, включая сегментацию изображений с помощью открытого программного обеспечения, и дальнейший групповой анализ формы с помощью автоматизированного пакета моделирования. Здесь мы демонстрируем каждый шаг протокола анализа 3D формы с гиппокампа сегментации из изображений MR мозга.
Статистический анализ формы структур мозга был использован для исследования связи между их структурными изменениями и патологическими процессами. Мы разработали программный пакет для точного и надежного моделирования форм и группового анализа. Здесь мы вводим конвейер для анализа формы, от индивидуального 3D-моделирования формы до количественного анализа формы группы. Мы также описываем шаги предварительной обработки и сегментации с использованием открытых программных пакетов. Это практическое руководство поможет исследователям сэкономить время и усилия в 3D-анализе формы на структурах мозга.
Форма анализа структур мозга стала предпочтительным инструментом для исследования их морфологических изменений в рамках патологических процессов, таких как нейродегенеративные заболевания и старение1. Требуются различные вычислительные методы, чтобы 1) точно разграничить границы целевых структур из медицинских изображений, 2) реконструировать целевую форму в виде 3D-поверхностной сетки, 3) построить межсубъекты корреспонденции по отдельным моделям формы с помощью параметризации формы или регистрации поверхности, и 4) количественно оценить региональные различия в форме между отдельными лицами или группами. За последние несколько лет, многие методы были введены в нейровизуальных исследований для каждого из этих шагов. Однако, несмотря на значительные события в этой области, существует не так много рамок, непосредственно применимых к исследованиям. В этой статье мы описываем каждый этап анализа форм структур мозга, используя наши пользовательские инструменты моделирования форм и общедоступные инструменты сегментации изображений.
Здесь мы демонстрируем рамки анализа формы для структур мозга через анализ формы левого и правого гиппокампа с помощью набора данных о контроле взрослых и больных болезнью Альцгеймера. Атрофия гиппокампа признана критическим биомаркером визуализации при нейродегенеративных заболеваниях2,3,4. В нашей структуре анализа форм мы используем модель шаблона целевой структуры и деформируемую регистрацию шаблона к изображению в процессе моделирования форм. Модель шаблона кодирует общие характеристики формы целевой структуры в популяции, а также обеспечивает базовый уклад для количественной оценки различий в формах между отдельными моделями через их переходное отношение с моделью шаблона. При регистрации шаблона к изображению мы разработали метод деформации поверхности Лаплациа, чтобы соответствовать модели шаблона к целевой структуре в отдельных изображениях, минимизируя при этом искажение распределения точек в модели шаблона5,6,7. Осуществимость и надежность предлагаемой структуры были подтверждены в последние нейровизуальные исследования когнитивного старения8, раннее выявление легких когнитивных нарушений9, и для изучения связей между структурными изменениями мозга и уровня кортизола10. Такой подход облегчил бы использование методов моделирования форм и анализа в дальнейших нейровизуальных исследованиях.
Таким образом, мы описали программный конвейер для анализа формы на структурах мозга, включая (1) сегментацию изображений MR с помощью открытых инструментов (2) индивидуальную реконструкцию формы с использованием деформируемой модели шаблона, и (3) количественную разницу в форме измерени…
The authors have nothing to disclose.
Работа финансировалась Национальным исследовательским фондом Кореи (JP as the PI). JK финансируется Национальным университетским исследовательским фондом Кёнгпука; и MCVH финансируется Благотворительным фондом Row Fogo и Королевским обществом Эдинбурга. Сегментация гиппокампа была адаптирована из внутренних руководящих принципов, написанных доктором Карен Фергюсон, в Центре клинических наук о мозге, Эдинбург, Великобритания.