Summary

Мышь жировой ткани сбора и обработки для анализа РНК

Published: January 31, 2018
doi:

Summary

Цель данного документа – представить пошаговые процедуры для сбора различных белой жировой ткани от мышей, обработки жира образцов и извлечь РНК.

Abstract

По сравнению с другими тканями, белой жировой ткани имеет значительно меньше РНК и белков содержание для вниз по течению приложений, таких как реальном масштабе времени PCR и западной помарки, поскольку он главным образом содержит липиды. РНК изоляции от образцах адипозных тканей также сложной, как избежать эти липиды требуются дополнительные шаги. Здесь мы представляем процедура собрать три анатомически разные белой жировой ткани от мышей, чтобы обрабатывать эти образцы и выполнять РНК изоляции. Далее мы опишем синтез cDNA и ген выражение экспериментов с использованием ПЦР в реальном времени. Настоящим описывается протокол позволяет сокращение загрязнения от волос и кровь на жировых отложений, а также загрязнения между различными жировых отложений во время сбора ткани животного. Он также был оптимизирован обеспечить достаточное количество и качество РНК извлечены. Этот протокол может широко применяться к любой модели мыши, где жировой ткани образцы требуются для обычных экспериментов например ПЦР в реальном времени, но не предназначен для изоляции от первичных адипоцитов клеточной культуры.

Introduction

Ожирение является всемирной эпидемии, которая может привести к осложнениям, например, тип 2 диабет1. Диета индуцированной ожирением и генетически модифицированных животных модели часто используются для исследования в ожирения и его осложнений связанные. Традиционно белой жировой ткани известен как отсек для избыток энергии и в основном состоит из липидов, в то время как коричневая жировая ткань преобразует энергию в тепло2,3. Жировой ткани является динамичным и будет расширять и сокращаться в зависимости от многих факторов, таких, как прием пищи и физической активности. Таким образом чтобы определить факторы, способствующие эти изменения, адекватные жировой ткани сбор и обработка являются требуется4.

Среди белой жировой ткани общепризнано, что подкожно и висцерального жира склады имеют различные свойства, такие как анатомической локализации и функционируют2,5. Следовательно чтобы избежать противоречивых результатов или большой изменчивостью, внимание необходимо предпринять во избежание перекрестного загрязнения между этими различными жировых отложений при сборе жировых отложений.

Кроме того есть три основных проблемы, при изоляции RNA или протеина от мышей белой жировой ткани. Во-первых собирая жировых отложений в ожирением мышей является не является легкой задачей, как граница, которая отделяет различные белый жировых депо не всегда ясно, в отличие от других органов, как почки и сердце6. Во-вторых из-за высоких липидов содержание жировой ткани, при изоляции RNA или протеина, слой липидов плавает на вершине и предотвращает прямой доступ к образцу. В-третьих, белой жировой ткани в отличие от коричневая жировая ткань или другие ткани, имеет значительно меньше РНК и белков содержание и это серьезной проблемой при использовании молодых мышей, мышей кормили нормальной диете (N) и мышей, которые должны иметь низкий жировой массы (т.е. KO модели, лечение препаратами, осуществлять подготовку, и т.д.) 7 , 8.

Таким образом важно выбрать подходящий метод, чтобы изолировать РНК из жировой ткани. Альтернативные методы для извлечения фенольных/хлороформ являются коммерческие наборы. Они обычно основаны на первоначальный фенола извлечения шаг, затем РНК на столбец9. Эти наборы являются более дорогостоящими, как правило дают образцы ниже доходности, в то время как качество РНК может быть переменная однако и менее затратным по времени. Однако один из самых больших преимуществ для фенола раствор/хлороформ извлечения описанных здесь является возможность изолировать РНК, ДНК и белка от одного образца10. Поскольку мышь жировых отложений обычно малы и дать небольшое количество белков и РНК (особенно в худой мыши модели), эти протоколы максимально данных, которую можно получить из небольшой пример.

Цель настоящего документа заключается в подробно описать метод для обеспечения адекватного проб из трех мышей белой жировой ткани складов, а также количество и качество изоляции РНК. РНК, получены этот протокол может использоваться для выполнения в реальном времени анализы ПЦР. Этот протокол не предназначен для изоляции RNA от искусственного первичной адипоцитов.

Protocol

Уход мышей, используемые в процедурах соблюдали стандарты ухода и использования экспериментальных животных, установленные канадским Советом по защите животных. Все процедуры были утверждены университета животное уход и использование Комитетом на чум научно-исследовательский центр….

Representative Results

После процедуры патанатомия три белой жировой ткани были собраны и взвешенной из двух групп мышей (N и ВЧ диета кормили мышей). Как и ожидалось, мышь на диеты ВЧ возросло окончательного веса и веса по сравнению с однопометники N диеты (Таблица 1). Эти замечания бы?…

Discussion

Следующие ВЧ диета питание, ожирением мышей были обнаружены увеличились тела и белой жировой ткани веса по сравнению с мышей кормили N диета. РНК, извлечены с помощью раствора фенола принесли образцы с хорошим чистоты. Лептин является Ади­по­Кин главным образом производимые жировой тк?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Эта работа была поддержана диабета Канады.

Materials

1 mL seringes
1X TE solution (10 mM Tris-HCl and 1 mM EDTA•Na2. pH 8.0)
22 G needles
26 G needles
75% Ethanol
Block heater (dry bath)
Chloroform Sigma C2432-500mL
dATP    Thermo scientific R0141
dCTP   Thermo scientific R0151
dGTP   Thermo scientific R0161
DNase I (1 U/µl)  Thermo scientific EN0521
dTTP  Thermo scientific R0171
Faststart Universal SYBR green Master (Rox) Roche 4913922001
Faststart universal SYBR green master (Rox) fluorescent dye  Roche 4913914001
Filtered tips
Forceps  Instrumentarium HB275
Gauze
Hammer
High fat rodent diet Bio-Serv, Frenchtown, NJ F3282
Isopropanol  Laboratoire MAT IH-0101
Leptin forward PCR primer (5’-GGGCTTCACCCCATTCTGA-3’) 10 uM
Leptin reverse PCR primer (5’-GGCTATCTGCAGCACATTTTG-3’) 10 uM
Liquid nitrogen
Maxima Reverse Transcriptase (enzyme and 5x buffer) Thermo scientific EP0742
Nanopure water (referred as ultrapure water)
Nitrile examination gloves
Nitrile gloves
Normal rodent diet Harlan Laboratories, Madison, WI Harlan 2018
P1000 pipetman
P2 pipetman
P20 pipetman
P200 pipetman
Phenol solution (TRIzol)  Ambion Life Technologies 15598018
Pre-identified aluminium foil
Quartz spectrophotometer cuvette
Rack for PCR tube strips
Racks for RT-PCR tube strips
Random hexamers  Invitrogen 58875
Real-time PCR Rotor Gene system  Corbett research RG-3000 Rotor-Gene thermal cycler
Refrigerated bench-top centrifuge
RiboLock RNase Inhibitor  Thermo scientific EO0381
RNase-free 1.5 mL eppendorf tubes
RNase-free 1.5 mL screw cap tubes
RNase-free PCR tube strips (0.2 mL) and caps
RNase-free water  Hyclone SH30538.02
RT-PCR machine Qiagen Rotor-Gene Corbett 3000
RT-PCR tube strips (0.1 mL) and caps
S16 forward PCR primer (5’-ATCTCAAAGGCCCTGGTAGC-3’) 10 uM
S16 reverse PCR primer (5’ ACAAAGGTAAACCCCGATCG-3’) 10 uM
Spectrophotometer Biochrom Ultrospec 3100 pro
Stainless steel mortar and pestle
Surgical pads Home made a foam board wrapped in a disposable absorbent underpad
Surgical scissors  Intrumentarium 130.450.11
Thermal cycler
Thermal cycler  Biometra Thermocycler
Vortex mixer
Weighing spatula

References

  1. Guh, D. P., et al. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC. Public Health. 9, 88 (2009).
  2. Wronska, A., Kmiec, Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol (Oxf). 205 (2), 194-208 (2012).
  3. Cannon, B., Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol Rev. 84 (1), 277-359 (2004).
  4. Holland, N. T., Smith, M. T., Eskenazi, B., Bastaki, M. Biological sample collection and processing for molecular epidemiological studies. Mutat Res. 543 (3), 217-234 (2003).
  5. Ibrahim, M. M. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 11 (1), 11-18 (2010).
  6. Mann, A., Thompson, A., Robbins, N., Blomkalns, A. L. Localization, identification, and excision of murine adipose depots. J Vis Exp. (94), (2014).
  7. Hemmrich, K., Denecke, B., Paul, N. E., Hoffmeister, D., Pallua, N. RNA Isolation from Adipose Tissue: An Optimized Procedure for High RNA Yield and Integrity. Laboratory Medicine. 41 (2), 104-106 (2010).
  8. Cirera, S. Highly efficient method for isolation of total RNA from adipose tissue. BMC Res Notes. 6, 472 (2013).
  9. Tan, S. C., Yiap, B. C. DNA, RNA, and protein extraction: the past and the present. J Biomed Biotechnol. 2009, 574398 (2009).
  10. Sellin Jeffries, M. K., Kiss, A. J., Smith, A. W., Oris, J. T. A comparison of commercially-available automated and manual extraction kits for the isolation of total RNA from small tissue samples. BMC Biotechnol. 14, 94 (2014).
  11. Tan, P., et al. Impact of the prorenin/renin receptor on the development of obesity and associated cardiometabolic risk factors. Obesity (Silver. Spring). 22 (10), 2201-2209 (2014).
  12. Taylor, S., Wakem, M., Dijkman, G., Alsarraj, M., Nguyen, M. A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. Methods. 50 (4), 1-5 (2010).
  13. Aranda, P. S., LaJoie, D. M., Jorcyk, C. L. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis. 33 (2), 366-369 (2012).
  14. Mercure, C., Prescott, G., Lacombe, M. J., Silversides, D. W., Reudelhuber, T. L. Chronic increases in circulating prorenin are not associated with renal or cardiac pathologies. Hypertension. 53 (6), 1062-1069 (2009).
  15. Dusaulcy, R., et al. Adipose-specific disruption of autotaxin enhances nutritional fattening and reduces plasma lysophosphatidic acid. J. Lipid Res. 52 (6), 1247-1255 (2011).
  16. Nakamura, K., Fuster, J. J., Walsh, K. Adipokines: a link between obesity and cardiovascular disease. J Cardiol. 63 (4), 250-259 (2014).
  17. Taylor, S. C., Mrkusich, E. M. The state of RT-quantitative PCR: firsthand observations of implementation of minimum information for the publication of quantitative real-time PCR experiments (MIQE). J Mol Microbiol Biotechnol. 24 (1), 46-52 (2014).
  18. Hummon, A. B., Lim, S. R., Difilippantonio, M. J., Ried, T. Isolation and solubilization of proteins after TRIzol extraction of RNA and DNA from patient material following prolonged storage. Biotechniques. 42 (4), 467-470 (2007).

Play Video

Cite This Article
Tan, P., Pepin, É., Lavoie, J. L. Mouse Adipose Tissue Collection and Processing for RNA Analysis. J. Vis. Exp. (131), e57026, doi:10.3791/57026 (2018).

View Video