A ligação de trifosfato de guanosina (GTP) é um dos primeiros eventos na ativação do receptor acoplado com proteína G (GPCR). Este protocolo descreve como caracterizar farmacologicamente as interacções específicas de GPCR-ligando, monitorizando a ligação do análogo de GTP radio-marcado, [ 35 S] guanosina-5'-O- (3-tio) trifosfato ([35S] GTPγS), em Resposta a um ligando de interesse.
Os receptores acoplados a proteína G (GPCRs) são uma grande família de receptores transmembranares que desempenham papéis críticos na fisiologia celular normal e constituem um alvo farmacológico importante para múltiplas indicações, incluindo analgesia, regulação da pressão arterial e tratamento de doenças psiquiátricas. Após a ligação do ligando, os GPCR catalisam a ativação de proteínas G intracelulares estimulando a incorporação de trifosfato de guanosina (GTP). As proteínas G ativadas estimulam as vias de sinalização que suscitam respostas celulares. A sinalização de GPCR pode ser monitorizada medindo a incorporação de uma proteína radiomarcada e não hidrolisável de GTP, [35S] guanosina-5'-O- (3-tio) trifosfato ([35S] GTPγS), em proteínas G. Ao contrário de outros métodos que avaliam mais processos de sinalização a jusante, a ligação de [ 35 S] GTPγS mede um evento proximal na sinalização de GPCR e, importante, pode distinguir agonisTs, antagonistas e agonistas inversos. O presente protocolo descreve um método sensível e específico para estudar a sinalização GPCR usando preparações de membrana em bruto de um GPCR arquetípico, o receptor μ-opióide (MOR1). Embora existam abordagens alternativas para células e tecidos fracionados, muitos são custos proibitivos, tediosos e / ou requerem equipamentos de laboratório não-padrão. O presente método fornece um procedimento simples que enriquece as membranas brutas funcionais. Após o isolamento de MOR1, foram determinadas várias propriedades farmacológicas de seu agonista, [D-Ala, N-MePhe, Gly-ol] -enkephalin (DAMGO) e antagonista, naloxone.
Os receptores G-Protein-Coupled (GPCRs) são uma grande família de receptores de superfície celular responsáveis por uma série notável de processos fisiológicos, incluindo analgesia, olfação e comportamento 1 . Os GPCRs atuam detectando sinais externos específicos e subsequentemente estimulando a sinalização intracelular. Eles, portanto, marcam uma junção de chave entre os ambientes externos e internos de uma célula. Devido ao papel crítico que os GPCRs desempenham na biologia, eles se tornaram os principais alvos tanto da pesquisa básica como da descoberta de drogas 2 , 3 .
Ao contrário de outras famílias de receptores que se ligam a ligandos discretos, os GPCRs podem ligar tipos diferentes de moléculas. Enquanto um GPCR pode interagir com péptidos, outro pode sentir fótons, pequenas moléculas ou íons 1 , 4 . Enquanto seus ligandos são diversos, os GPCRs são unificados em seu arquiteto geralUre e função. GPCRs individuais são constituídos por sete proteínas transmembranares α-helicoidais com terminais amino extracelulares e terminais carboxílicos intracelulares 5 , 6 . Os GPCRs são acoplados a proteínas intracelulares – complexos de proteínas heterotriméricas compostos por subunidades α, β e γ – que medeiam diversas vias de sinalização 7 . A subunidade G α é uma proteína de ligação a nucleótidos de guanina que é inativa quando vinculada ao difosfato de guanosina (PIB) e ativa quando vinculada ao trifosfato de guanosina (GTP) 8 , 9 . Quando os GPCRs ligam seus ligandos, eles sofrem uma mudança conformacional que permite que G α se dissocie de G βγ , permitindo que G α troque PIB por GTP 7 . O próprio receptor é fosforilado no seu terminal carboxílico por várias serina / tremonIne quinases 10 , 11 e internalizadas para atenuar a sinalização do receptor 12 , 13 , 14 . Enquanto isso, o monómero G α ativado e o dímero G βγ passam a ativar vias de sinalização distintas 7 . Existem várias isoformas de cada subunidade de proteína G, e cada isoforma tem como alvo vias a jusante particulares e sistemas de mensageiro secundário. As principais isoformas de G α incluem G s , G q , G i / o e G 12-13 . Normalmente, os GPCR individuais se associam a uma isoforma particular de G α , ligando assim um estímulo externo a uma resposta celular específica 1 .
A caracterização de uma interação GPCR-ligando é fundamental para a compreensão da biologia do receptor. Como a troca GDP / GTP é uma das primeiras vésperasO que segue a ligação do ligando, o monitoramento da ligação GTP pode medir a ativação ou a inibição do GPCR. O ensaio de eventos mais a jusante na sinalização de GPCR geralmente não é quantitativo ou estequiométrico, pode não distinguir os agonistas completos de parciais e pode exigir reagentes caros. Além disso, o aumento da ligação GTP às proteínas G α é um evento quase universal após a ativação do GPCR, o que significa que a medição da ligação GTP é um ensaio amplamente aplicável para o monitoramento da atividade da maioria dos GPCRs. Medir a ligação GTP é uma abordagem simples e rápida para monitorar a sinalização GPCR em células que sobreexpressam o receptor de interesse ou no tecido nativo. O presente protocolo detalha um ensaio funcional de ligação de GTP usando um GPCR arquetípico, o receptor de opióides μ (MOR1), para determinar quantitativamente a atividade de um agonista e antagonista na sinalização GPCR.
Este protocolo descreve primeiro como isolar as membranas brutas das células que sobre-expressam o MOR1. Observe queEste protocolo não se limita aos sistemas de sobreexpressão e pode ser aplicado a muitas fontes de membrana, incluindo tecido nativo ou preparações que expressam múltiplos receptores e proteínas G 15 . O protocolo então detalha como medir a ligação de um análogo GTP radioativo a essas membranas em resposta a concentrações variáveis de [D-Ala, N-MePhe, Gly-ol] -enkephalin (DAMGO) ou naloxone, um agonista e antagonista MOR1, respectivamente. O análogo GTP, [35S] guanosina-5'-O- (3-tio) trifosfato ([35S] GTPγS) não é hidrolisável. Esta propriedade é crítica porque as subunidades de G α exibem atividade de GTPase intrínseca 7 e eliminariam o fosfato de gama marcado em um radioquímico GTP hidrolisável. As membranas são então presas em filtros de fibra de vidro e lavadas, após o que a GTP radiomarcada é quantificada por contagem de cintilação líquida. Múltiplos parâmetros farmacológicos podem ser derivados para caracterizarE a interação receptor-ligando, incluindo a resposta semi-máxima (EC 50 ) e coeficiente de Hill (n H ) para agonistas e a concentração inibidora semi-máxima (IC50) e constante de dissociação de equilíbrio (Kb) para antagonistas 16 , 17 , 18 .
O presente protocolo descreve dois métodos separados, mas complementares: uma abordagem simples para fracionar células e tecidos em compartimentos amplos mas distintos e um meio para investigar a sinalização de GPCR medindo a ligação de [ 35 S] GTPγS.
O fracionamento celular eficiente possui uma ampla gama de aplicações, que vão desde a extração e enriquecimento de proteínas até a avaliação da localização subcelular de proteínas, ao estudo da farmacologia de rec…
The authors have nothing to disclose.
Este trabalho foi apoiado pela bolsa DA-000266 dos Institutos Nacionais de Saúde e pela concessão T32 do Programa de Treinamento Médico Científico (CV, NWZ e PCS). Os autores também gostariam de reconhecer o somersault18: 24 (somersault1824.com) para a Biblioteca de Ciência e Ilustrações Médicas.
DMEM, high glucose, pyruvate, no glutamine | Thermo Fisher Scientific | 10313021 | Warm in 37°C water bath before use |
L-glutamine | Thermo Fisher Scientific | 25030081 | Warm in 37°C water bath before use |
Penicillin-Streptomycin | Thermo Fisher Scientific | 15140122 | Warm in 37°C water bath before use |
Opti-MEM I Reduced Serum Medium | Thermo Fisher Scientific | 31985070 | Warm in 37°C water bath before use |
Fetal Bovine Serum | Thermo Fisher Scientific | 16000044 | Warm in 37°C water bath before use |
Cell culture 10-cm plate | Sigma-Aldrich | CLS430167 | |
Lipofectamine 3000 reagent | Thermo Fisher Scientific | L3000-008 | |
1.6 mL microcentrifuge tubes | USA Scientific | 1615-5500 | |
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) | Sigma-Aldrich | H3375 | |
Tris(hydroxymethyl)aminomethane (Trizma base) | Thermo Fisher Scientific | BP152-1 | |
ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) | Sigma-Aldrich | E3889 | |
Ethylenediaminetetraacetic acid (EDTA) | Sigma-Aldrich | E9884 | |
Sucrose | Sigma-Aldrich | S5016 | |
cOmplete ULTRA Tablets, Mini, EASYpack Protease Inhibitor Cocktail | Sigma-Aldrich | 2900 | |
DL-Dithiothreitol (DTT) | Sigma-Aldrich | DO632 | |
Sodium chloride (NaCl) | Thermo Fisher Scientific | BP358-1 | |
Magnesium chloride (MgCl2) | Sigma-Aldrich | M1028-1 | |
Pellet pestles motor | Sigma-Aldrich | Z359971 | |
Pestles | Bel Art | F19923-0001 | |
Bovine serum albumin (BSA) | Affymetrix | 10857 | |
[35S]guanosine-5’-O-(3-thio)triphosphate ([35S]GTPγS) | Perkin Elmer | NEG030H | |
non-radiolabeled guanosine-5’-O-(3-thio)triphosphate (GTPγS) | Sigma-Aldrich | 89378 | |
guanosine diphosphate (GDP) | Sigma-Aldrich | 51060 | |
Bradford reagent | Bio-Rad | 5000006 | |
UV/VIS spectrophotometer | Beckman Coulter | DU640 | |
spectrophotometer cuvettes | USA Scientific | 9090-0460 | |
orbital shaker | Thermo Fisher Scientific | 2314 | |
thermomixer | Eppendorf | 535027903 | |
glass fiber filters | GE Healthcare Life Sciences | 1821-021 | |
vacuum filtration apparatus | Millipore Corporation | XX2702550 | |
desktop microcentrifuge | Eppendorf | 65717 | |
Scintillation counter | Beckman Coulter | LS6500 | |
scintillation fluid | Ecoscint A | LS-273 | |
scintillation counter vials | Beckman Coulter | 592690 | |
scintillation vial lids | Beckman Coulter | 592928 | |
Prism 6 | GraphPad Software | PRISM 6 | |
ATP1A1 antibody | Developmental Studies Hybridoma | a6F | 1:1000 in 3% BSA |
GAPDH antibody | EMD Millipore | CB1001 | 1:5000 in 3% BSA |
H2B antibody | Cell Signaling | 2934S | 1:2500 in 3% BSA |
PDI antibody | Cell Signaling | 3501S | 1:1000 in 3% BSA |
HA antibody | Roche | 11867423001 | 1:2000 in 3% BSA |