Detection and isolation of clinically relevant Vibrio species require selective and differential culture media. This study evaluated the ability of a new chromogenic medium to detect and identify V. parahaemolyticus and other related species. The new medium was found to have better sensitivity and specificity than the conventional medium.
Les infections d'origine alimentaire aux États – Unis causée par les espèces de Vibrio ont montré une tendance à la hausse. Dans le genre Vibrio, V. parahaemolyticus est responsable de la majorité des infections -Associated Vibrio. Ainsi, la différenciation précise entre les Vibrio spp. et la détection de V. parahaemolyticus est d'une importance cruciale pour assurer la sécurité de notre approvisionnement alimentaire. Bien que les techniques moléculaires sont de plus en plus commun, des méthodes de culture-fonction sont toujours systématiquement fait et ils sont considérés comme des méthodes standard dans certaines circonstances. Par conséquent, un nouveau milieu de gélose chromogène a été testé avec le but de fournir une meilleure méthode pour l' isolement et la différenciation des Vibrio spp cliniquement pertinente. Le protocole par rapport à la limite de sensibilité, de spécificité et de détection pour la détection de V. parahaemolyticus entre le nouveau milieu chromogène et un milieu classique. Divers V. souches parahaemolyticus (n = 22) représentant divers sérotypes et source d'origine ont été utilisés. Ils ont déjà été identifiés par la Food and Drug Administration (FDA) et des Centers for Disease Control and Prevention (CDC), et en outre vérifié dans notre laboratoire par tlh -PCR. Au moins quatre essais séparés, ces souches ont été inoculées sur l'agar et du thiosulfate citrate sels biliaires chromogènes-saccharose (TCBS) d'agar-agar, ce qui est le support recommandé pour la culture de cette espèce, suivie d'une incubation à 35-37 ° C pendant 24 -96 h. Trois V. souches parahaemolyticus (13,6%) ne se développent pas de façon optimale sur TCBS, néanmoins exposées colonies vertes s'il y avait une croissance. Deux souches (9,1%) n'a pas donné les colonies cyan attendus sur la gélose chromogène. V. Non- souches parahaemolyticus (n = 32) ont également été testés pour déterminer la spécificité de la gélose chromogénique. Parmi ces souches, 31 ne poussent pas ou présentaient d'autres morphologies de colonies. La récupération moyenne de V. parahaemolyticus sur le chromogenic agar était d'environ 96,4% par rapport à la gélose trypticase soja complémenté avec 2% de NaCl. En conclusion, le nouveau gélose chromogénique est un moyen efficace pour détecter V. parahaemolyticus et pour le différencier des autres vibrions.
En tant que membre du genre Vibrio, V. parahaemolyticus est une, courbe, bactérie en forme de bâtonnet à Gram négatif, non sporulé. Il présente une grande mobilité dans les deux milieux liquides et semi-solides. La plupart V. souches parahaemolyticus sont non pathogènes pour l' homme, mais les sous – types pathogènes ont provoqué des épidémies et des pandémies, d' où cette espèce est considérée comme une importante pathogène d'origine alimentaire dans de nombreux pays 1,2. L'incidence de l' infection par Vibrio aux États – Unis a montré une tendance à la hausse depuis 2000 3. Parmi Vibrio spp., V. parahaemolyticus est l'espèce la plus fréquemment rapportés causant des maladies aux États – Unis 4,5. D' autres espèces cliniquement pertinentes comprennent V. alginolyticus, V. vulnificus, V. cholerae, etc. Un petit pourcentage des maladies est due à la fois par de multiples espèces.
V. parahaemolyticus est un i naturelnhabitant de l'eau de mer et donc largement distribué dans les eaux marines à travers le monde, y compris les estuaires. L'espèce a été découverte en 1950 suite à une épidémie d'intoxication alimentaire au Japon. Aux Etats – Unis, l'espèce a été isolée d' abord dans l' eau de mer, des sédiments et des mollusques dans la région de Puget Sound 6,7. Filtreurs dans les habitats marins, tels que les mollusques bivalves, peuvent abriter V. parahaemolyticus dans le cadre de leur flore naturelle 8. En tant que tel, V. infections parahaemolyticus chez l' homme sont souvent liés à la consommation de fruits de mer contaminés, en particulier les fruits de mer crus ou pas assez cuits. Un itinéraire moins commun d'entrée se produit lorsque plaie ouverte est exposée à l'eau de mer, ce qui conduit à une infection de la peau. La plupart V. souches parahaemolyticus ne causent pas la maladie humaine, mais certains sous – types hébergeant des facteurs de virulence tels que hémolysine directe thermostable (TDH) sont pathogènes. Les symptômes les plus fréquents de V. d' origine alimentaire infection parahaemolyticus sontla diarrhée et des douleurs abdominales, suivie par des nausées, des vomissements et de la fièvre. Maux de tête et des frissons sont également signalés. La période d'incubation moyenne est de 15 heures, mais peut aller jusqu'à 96 heures après la consommation d' une quantité suffisante de souches pathogènes 9. La maladie dure de deux à trois jours. Les symptômes de gastro – entérite causée par V. parahaemolyticus sont en grande partie auto-limitation et le traitement spécial donc est pas nécessaire. Des cas bénins de la gastro-entérite peuvent être traités efficacement par réhydratation orale. Plus graves maladies peuvent être traitées par des antibiotiques tels que la tetracycline ou la ciprofloxacine 10. Le taux de mortalité est d'environ 2% pour les cas de gastro-entérite, mais peut être aussi élevé que 29% pour ceux qui développent une infection sanguine ou une septicémie. Toute personne qui consomme des fruits de mer ou a une plaie ouverte exposée à l' eau de mer est à risque de V. infection parahaemolyticus. La forme la plus grave des maladies, la septicémie mortelle, est plus fréquente chez une sous-population avec co médicale sous-jacentenditions 11, qui comprennent l' alcoolisme, une maladie hépatique, le diabète, une maladie rénale, une affection maligne, et d' autres conditions conduisant à une réponse immunitaire affaibli. Notamment, ce groupe de personnes est également à un risque plus élevé de contracter des maladies graves causées par V. vulnificus, qui peut être trouvé dans les habitats naturels similaires à V. parahaemolyticus.
V. parahaemolyticus est régulièrement isolé en utilisant des sels-saccharose thiosulfate-citrate-biliaires (TCBS) agar comme milieu sélectif et différentiel. Enrichissement en eau peptonée alcaline peut précéder l'isolement sur gélose TCBS. Les colonies sur TCBS sont ensuite testés dans une gamme de tests biochimiques et / ou des tests moléculaires ciblant la présence de gènes spécifiques à l'espèce. Les méthodes basées sur la PCR sont souvent utilisés pour confirmer l'identité de V. parahaemolyticus en amplifiant le gène hémolysine thermolabile, tlh 12.
Quelle que soit la choix des méthodes de confirmation, il est important de disposer d' un moyen efficace pour isoler et de différencier V. parahaemolyticus d'autres vibrions marins en premier lieu. TCBS a régulièrement été utilisé pour différencier les espèces dans le genre Vibrio selon leurs capacités à fermenter le saccharose 12. Réaction de fermentation positive est accompagnée par un changement de couleur de l'indicateur de pH bleu de bromothymol. V. colonies parahaemolyticus sont assez distinctif sur TCBS, présentant le bleu à la couleur verte. Cependant, ce moyen ne peut pas différencier facilement V. alginolyticus et V. cholerae. Proteus sucrose-fermentation peuvent produire des colonies jaunes ressemblant à V. cholerae ou V. 13 alginolyticus. Sur l' isolement initial sur TCBS, V. parahaemolyticus peut également être mal identifié comme Aeromonas hydrophila, Plesiomonas shigelloides et Pseudomonas spp 14. Les souches avec un retard ferm saccharoseentation peut être confondue avec d' autres saccharose fermentant Vibrio 13, qui comprennent V. parahaemolyticus. TCBS a été jugée non sensible contre Escherichia coli, Pseudomonas putrefaciens, entre autres. Plusieurs autres espèces donnent vert à des colonies grises qui sont potentiellement confondus avec V. parahaemolyticus ou V. vulnificus 15. Par conséquent, il est souhaitable de développer des milieux de culture alternative avec une meilleure sensibilité et une spécificité envers la détection et l' isolement de V. parahaemolyticus et d' autres espèces étroitement apparentées.
Plusieurs alternatives des médias ont été récemment mis au point. En plus de l'incorporation d'agents sélectifs, la plupart incorporent des substrats chromogènes pour différencier les espèces en fonction de leurs activités enzymatiques différentielles. Par exemple, l' indoxyl-β-glucoside et le β-indoxyl galactoside ont été utilisés comme substrats chromogènes pour différencier V. paracolonies de haemolyticus (qui apparaissent bleu-vert) à partir de ceux de V. cholerae (violet) en raison de leurs capacités différentielles pour produire β-glucosidase et β-galactosidase 16. Différentes formulations de gélose chromogène développées par plusieurs groupes ont été évalués et ont été signalés à effectuer comparable ou supérieure à TCBS 17,18,19. Un avantage d'utiliser un milieu chromogène est que la coloration du milieu environnant est minime, ce qui facilite l'isolement de colonies particulières. Dans cette étude, nous avons évalué la capacité d'un milieu chromogénique nouvellement formulé pour détecter et isoler V. cholerae, V. parahaemolyticus, et V. vulnificus; avec un accent particulier sur sa capacité à différencier V. parahaemolyticus provenant d' autres espèces.
Cette étude se concentre sur le développement et l'évaluation des milieux de culture. Classiquement, TCBS est sélectif et différentiel moyen utilisé pour isoler et détecter V. parahaemolyticus, V. cholerae et V. vulnificus 12. Cependant, les limites ont été rapportées pour ce milieu, comme l'incapacité de différencier V. cholerae d'autres espèces de Vibrio. Le saccharose et un indicateur de pH sont les agents de différenciation de TCB. Ainsi, la pr…
The authors have nothing to disclose.
Nous remercions M. Channey, E. Chau, et K. Tomas pour leur aide sur le projet. fournitures de projets ont été financés en partie par California Polytechnic State University.
Reagent/Equipment | |||
Agar | Fisher Scientific | DF0140-15-4 | may use other brands |
Autoclave | Any | ||
BHI powder | Fisher Scientific | DF0418-17-7 | may use other brands |
Blender | Any | to blend oyster meat | |
CampyGen gas generator | Hardy Diagnostics | CN035A | to provide a microaerophilic atmosphere; may use other brands |
Chocolate agar plates | Hardy Diagnostics | E14 | may use other brands |
Common PCR reagents (dNTPs, MgCl2, Taq Polymerase) | Any | or use PCR beads (Fisher Sci 46-001-014) | |
Culture tubes | Fisher Scientific | S50712 | may use other brands |
Eppendorf tubes | Fisher Scientific | S348903 | may use other brands |
Gel doc | Any | ||
HardyChrom Vibrio agar plates | Hardy Diagnostics | G319 | This study evaluates this medium |
Incubator | Any | ||
Inoculating loops | Fisher Scientific | 22-363-606 | 10 microliter-size was used in this study |
NaCl | Fisher Scientific | BP358-212 | may use other brands |
Oysters | Any | ||
PBS | Fisher Scientific | R23701 | may use other brands |
Petri dish | Fisher Scientific | FB0875713 | may use other brands |
Pipette and tips | Any | Sterilized tips | |
Primers for tlh | IDT DNA | ||
Scale | Any | ||
Spreader | Fisher Scientific | 08-100-11 | Beads may be used instead |
Stomacher blender | Stomacher | 400 | Samples were homogenized at 200 rpm for 30 sec. Other homogenizer can be used. |
Sterile filter bags for blenders | Fisher Scientific | 01-812-5 | |
TCBS powder | Hardy Diagnostics | 265020 | This study evaluates this medium |
Thermocycler | Any | ||
TSB powder | Fisher Scientific | DF0370-07-5 | may use other brands |
UV viewing cabinet | Any | Emit long-wave UV light | |
Water bath | Any | ||
Name | Sources | Catalog Number | Comments |
Bacterial species and strains | |||
Aeromonas hydrophila | ATCC | ||
Candida albicans | ATCC | ||
Campylobacter jejuni | ATCC | ||
Escherichia coli | ATCC | ||
Proteus mirabilis | ATCC | ||
Pseudomonas aeruginosa | ATCC | ||
Staphylococcus aureus | ATCC | ||
Salmonella Choleraesuis | ATCC | ||
Shigella boydii | ATCC | ||
Shigella flexneri | ATCC | ||
Shigella sonnei | ATCC | ||
Vibrio alginolyticus | ATCC | ||
V. cholerae (serotypes include O139, O1, non O1, El Tor biovars) | FDA, ATCC | ||
V. damsela | FDA | ||
V. fisherii | Environment | ||
V. fluvialis | CDC | ||
V. furnissii | CDC | ||
V. hollisae | FDA | ||
V. metschnikovii | ATCC | ||
V. mimicus | FDA | ||
V. parahaemolyticus(serotypes include O3:K6, O1:K56, O4:K8, O5:K15, O8, etc) | ATCC, FDA, CDC, Environment | ||
V. proteolyticus | FDA | ||
V. vulnificus | FDA |