Summary

La eficacia protectora y la respuesta inmune pulmonar tras la administración subcutánea e intranasal BCG en ratones

Published: September 19, 2016
doi:

Summary

We herein detail the methodology followed to compare protective efficacy and lung immune response induced by intranasal and subcutaneous immunization with BCG in mouse model. Our results show the benefits of pulmonary vaccination and suggest a role for IL17-mediated response in vaccine-induced protection.

Abstract

Despite global coverage of intradermal BCG vaccination, tuberculosis remains one of the most prevalent infectious diseases in the world. Preclinical data have encouraged pulmonary tuberculosis vaccines as a promising strategy to prevent pulmonary disease, which is responsible for transmission. In this work, we describe the methodology used to demonstrate in the mouse model the benefits of intranasal BCG vaccination when compared to subcutaneous. Our data revealed greater protective efficacy following intranasal BCG administration. In addition, our results indicate that pulmonary vaccination triggers a higher immune response in lungs, including Th1 and Th17 responses, as well as an increase of immunoglobulin A (IgA) concentration in respiratory airways. Our data show correlation between protective efficacy and the presence of IL17-producing cells in lungs post-Mycobacterium tuberculosis challenge, suggesting a role for this cytokine in the protective response conferred by pulmonary vaccination. Finally, we detail the global workflow we have developed to study respiratory vaccination in the mouse model, which could be extrapolated to other tuberculosis vaccines, apart from BCG, targeting the mucosal response or other pulmonary routes of administration such as the intratracheal or aerosol.

Introduction

La tuberculosis (TB) es una de las principales enfermedades infecciosas que causan más muertes asociadas que el VIH en el mundo y unida a la creciente aumento de cepas resistentes a múltiples fármacos TB hace un problema de salud mundial alarmante 1. Las nuevas herramientas de diagnóstico, medicamentos más eficaces y menos tóxicos, y nuevas vacunas contra la tuberculosis seguros y eficaces son una necesidad urgente, especialmente en el mundo en desarrollo.

En vivo atenuado bacilo de Calmette-Guerin (BCG) es actualmente la única vacuna autorizada contra la tuberculosis, que ha sido administrada por vía intradérmica en el nacimiento desde 1970 en todo el mundo. BCG se considera eficaz en la prevención de las formas graves de la enfermedad (meningitis y tuberculosis miliar) en niños, pero ha demostrado eficacia contra la TB pulmonar incompatible responsable de la transmisión de la enfermedad 2.

la vacunación pulmonar, que imita ruta natural de la infección tuberculosa, representa un enfoque atractivo para la imprimación de la respuesta inmune anfitrión locals. En este sentido, varios trabajos preclínicos en diferentes modelos animales pertinentes TB han demostrado una mayor eficacia de la vacuna después de la inmunización pulmonar en comparación con la vía subcutánea o intradérmica 3-6. Sin embargo, los mecanismos de protección provocados por la vacunación pulmonar no se conocen bien. En los últimos años, varios trabajos han señalado hacia respuesta mediada por IL17 como un factor importante de la respuesta inmune de la mucosa-TB específica, como en modelos de ratones deficientes para IL17 eficacia protectora inducida por la vacuna de la mucosa se ​​vea obstaculizada 7,8.

Recientemente hemos demostrado por primera vez que la administración intranasal BCG protege ratones DBA / 2, una cepa de ratones que se caracteriza por la falta de protección después de la vacunación con BCG subcutáneo 9. Estos resultados sugieren que la vacunación contra la tuberculosis respiratoria podría ser más eficaz en la reducción de la tasa de tuberculosis en los países endémicos, donde se considera ineficaz contra pulmon BCG intradérmicaTB aria.

Protocol

Todos los ratones se mantuvieron bajo condiciones controladas y se observó ningún signo de enfermedad. El trabajo experimental se llevó a cabo de acuerdo con las directivas europeas y nacionales para la protección de los animales de experimentación y con la aprobación de los comités de ética locales competentes. 1. Preparación de las poblaciones cuantificado de glicerol de BCG danesa y Mycobacterium tuberculosis H37Rv NOTA: Todos los prot…

Representative Results

Este trabajo describe la comparación de las dos vías de administración de BCG: subcutánea e intranasal. Vía subcutánea es comparable a la intradérmica, que es la ruta clínica actual para BCG en todo el mundo. Vía intranasal de la vacuna pretende imitar la ruta natural de la infección de M. la tuberculosis, con el objetivo de inducir la respuesta inmune directamente en los pulmones, el principal órgano afectado por este patógeno. <p class="jove_content" fo:keep-to…

Discussion

Although current vaccine against tuberculosis, BCG, is the most widely administered vaccine in history, tuberculosis remains one of the leading causes of death and morbidity from infectious diseases worldwide. This paradox is explained by the lack of protection of this vaccine against pulmonary tuberculosis, the responsible form of transmission. New vaccination approaches effective against pulmonary forms of the disease are urgently needed, as they would have the greatest impact on disease transmission globally.

<p c…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by “Spanish Ministry of Economy and Competitiveness” [grant number BIO2014-5258P], “European Commission” by the H2020 programs [grant numbers TBVAC2020 643381].

Materials

Middlebrook 7H9 broth BD 271310
Middlebrook ADC Enrichment BD 211887
Tween 80 Scharlau TW00800250
3-mm diameter Glass Beads Scharlau 038-138003
Middlebrook 7H10 Agar BD 262710
1-ml syringe 26GA 0.45×10 mm BD 301358
GentleMACS dissociator Miltenyi Biotec 130-093-235
C tubes Miltenyi Biotec 130-093-237
M tubes Miltenyi Biotec 130-093-236
Collagenase D Roche 11088882001
DNaseI Applichem A3778,0100
Falcon 70µm Cell Strainer Corning 352350
RPMI 1640 Sigma R0883
Red Blood Cell Lysing Buffer Sigma R7757
GlutaMAX Supplement Gibco 35050-061 100X concentrated
Penicillin-Streptomycin Solution Sigma P4333 100X concentrated
Fetal Calf Serum Biological Industries 04-001-1A
2-Mercaptoethanol Sigma M3148-25ML
Scepter 2.0 Handheld Automated Cell Counter Millipore PHCC20040
Scepter Cell Counter Sensors, 40 µm Millipore PHCC40050
Mycobacterium Tuberculosis – Tuberculin PPD Statens Serum Institut (SSI) 2390
Mouse IFN-γ ELISA development kit  Mabtech 3321-1H
Mouse IL17A ELISA development kit  Mabtech 3521-1H
Brefeldin A Sigma B7651
FITC Rat Anti-Mouse CD4 BD 553047
BD Cytofix/Cytoperm Kit BD 555028
APC-Cy7 Rat Anti-mouse IL-17A BD 560821
APC Mouse Anti-mouse IFNg BD 554413
LACHRYMAL OLIVE LUER LOCK 0.60 x 30 mm. 23G x 1 1/4” UNIMED 27.134 Used as trachea cannula for BAL
high-protein binding polystyrene flat-bottom 96-well plates MAXISORP NUNC 430341
Albumin, from bovine serum Sigma A4503
Goat Anti-Mouse IgA (α-chain specific)−Peroxidase antibody Sigma A4789
3,3′,5,5′-Tetramethylbenzidine (TMB)  Sigma T0440
MyTaq DNA Polymerase Bioline BIO-21107 The kit Includes Buffer 5x

References

  1. Zumla, A., et al. The WHO 2014 global tuberculosis report–further to go. Lancet Glob Health. 3 (1), e10-e12 (2015).
  2. Mangtani, P., et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis. 58 (4), 470-480 (2014).
  3. Aguilo, N., et al. Pulmonary Mycobacterium bovis BCG vaccination confers dose-dependent superior protection compared to that of subcutaneous vaccination. Clin Vaccine Immunol. 21 (4), 594-597 (2014).
  4. Chen, L., Wang, J., Zganiacz, A., Xing, Z. Single intranasal mucosal Mycobacterium bovis BCG vaccination confers improved protection compared to subcutaneous vaccination against pulmonary tuberculosis. Infect Immun. 72 (1), 238-246 (2004).
  5. Giri, P. K., Verma, I., Khuller, G. K. Protective efficacy of intranasal vaccination with Mycobacterium bovis BCG against airway Mycobacterium tuberculosis challenge in mice. J Infect. 53 (5), 350-356 (2006).
  6. Lagranderie, M., et al. BCG-induced protection in guinea pigs vaccinated and challenged via the respiratory route. Tuber Lung Dis. 74 (1), 38-46 (1993).
  7. Gopal, R., et al. Interleukin-17-dependent CXCL13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunol. 6 (5), 972-984 (2013).
  8. Khader, S. A., et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 8 (4), 369-377 (2007).
  9. Aguilo, N., et al. Pulmonary but Not Subcutaneous Delivery of BCG Vaccine Confers Protection to Tuberculosis-Susceptible Mice by an Interleukin 17-Dependent Mechanism. J Infect Dis. , (2015).
  10. Middlebrook, G., Cohn, M. L. Bacteriology of tuberculosis: laboratory methods. Am J Public Health Nations Health. 48 (7), 844-853 (1958).
  11. Brosch, R., et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 99 (6), 3684-3689 (2002).
  12. Kaushal, D., et al. Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis. Nat Commun. 6, 8533 (2015).
  13. Lochhead, J. J., Thorne, R. G. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 64 (7), 614-628 (2012).
  14. Lochhead, J. J., Wolak, D. J., Pizzo, M. E., Thorne, R. G. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab. 35 (3), 371-381 (2015).
  15. Griffiths, K. L., et al. Cholera toxin enhances vaccine-induced protection against Mycobacterium tuberculosis challenge in mice. PLoS One. 8 (10), e78312 (2013).
  16. Hirota, K., et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol. 14 (4), 372-379 (2013).
  17. Jaffar, Z., Ferrini, M. E., Herritt, L. A., Roberts, K. Cutting edge: lung mucosal Th17-mediated responses induce polymeric Ig receptor expression by the airway epithelium and elevate secretory IgA levels. J Immunol. 182 (8), 4507-4511 (2009).

Play Video

Cite This Article
Uranga, S., Marinova, D., Martin, C., Aguilo, N. Protective Efficacy and Pulmonary Immune Response Following Subcutaneous and Intranasal BCG Administration in Mice. J. Vis. Exp. (115), e54440, doi:10.3791/54440 (2016).

View Video