Summary

防御効力および肺免疫応答は、マウスに皮下および鼻腔内BCG投与後の

Published: September 19, 2016
doi:

Summary

We herein detail the methodology followed to compare protective efficacy and lung immune response induced by intranasal and subcutaneous immunization with BCG in mouse model. Our results show the benefits of pulmonary vaccination and suggest a role for IL17-mediated response in vaccine-induced protection.

Abstract

Despite global coverage of intradermal BCG vaccination, tuberculosis remains one of the most prevalent infectious diseases in the world. Preclinical data have encouraged pulmonary tuberculosis vaccines as a promising strategy to prevent pulmonary disease, which is responsible for transmission. In this work, we describe the methodology used to demonstrate in the mouse model the benefits of intranasal BCG vaccination when compared to subcutaneous. Our data revealed greater protective efficacy following intranasal BCG administration. In addition, our results indicate that pulmonary vaccination triggers a higher immune response in lungs, including Th1 and Th17 responses, as well as an increase of immunoglobulin A (IgA) concentration in respiratory airways. Our data show correlation between protective efficacy and the presence of IL17-producing cells in lungs post-Mycobacterium tuberculosis challenge, suggesting a role for this cytokine in the protective response conferred by pulmonary vaccination. Finally, we detail the global workflow we have developed to study respiratory vaccination in the mouse model, which could be extrapolated to other tuberculosis vaccines, apart from BCG, targeting the mucosal response or other pulmonary routes of administration such as the intratracheal or aerosol.

Introduction

結核(TB)は、結核驚くべき世界的な健康問題が1になり、世界のHIVよりも関連の死亡を引き起こし大手感染症の一つであり、多剤耐性株の上昇を高めることと組み合わせています。新しい診断ツール、より効果的かつ毒性の少ない薬、新たな安全かつ効果的な結核ワクチンは、特に発展途上国では、緊急の必要性です。

弱毒生カルメット・ゲラン桿菌(BCG)は、現在、全世界で1970年代以降、出生時に皮内投与された結核に対する唯一の認可ワクチンです。 BCGは、子供の病気(髄膜炎や粟粒結核)の重症型の予防に有効であると考えられるが、病気の伝染2の責任肺結核に対する矛盾した有効性を示しています。

結核感染の自然経路を模倣肺ワクチン接種は、ローカルホストの免疫応答をプライミングするための魅力的なアプローチを表し秒。この点において、異なる関連するTBの動物モデルにおいて、様々な前臨床作品は、皮下または皮内経路3-6と比較して、肺の免疫後の大きいワクチンの有効性を実証しています。それにもかかわらず、肺のワクチン接種によってトリガ保護メカニズムはよく理解されていません。 IL17粘膜ワクチンによって誘導される防御効力欠損マウスモデルで7,8を損なわれているように最後の年では、いくつかの作品は、TB-特有の粘膜免疫応答の重要な要因として、IL17が媒介する応答に向かって指摘しています。

最近では、BCGの投与は、DBA / 2マウス、皮下BCGの予防接種9後の保護の欠如によって特徴づけられるマウス系統を保護鼻腔内を初めて実証しました。これらの結果は、皮内BCGをpulmonに対して効果がないとみなされる場合、呼吸TBワクチンは流行国でTBの速度を低下させる、より効果的であることが示唆しました進TB。

Protocol

全てのマウスは、制御された条件下で維持し、疾患の徴候について観察しました。実験研究は、実験動物の保護のためのヨーロッパと国家の指令と一致し、有能な地元の倫理委員会から承認を得て実施しました。 BCGデンマークの定量化グリセロールストックと結核菌 H37Rvの調製注:記載のすべてのプロトコルは、BSL3の条件下で行?…

Representative Results

皮下および鼻腔内:この作品は、BCGの投与の2ルートの比較を説明します。皮下経路は、世界中のBCGのための現在の臨床経路である皮内、に匹敵します。ワクチン接種の鼻腔内経路は、Mの感染の自然経路を模倣することを目指して肺に直接免疫応答を誘導することを目的に、この病原体の主要な標的臓器と結核 、。 <p class="jove_content" fo:keep-together.within…

Discussion

Although current vaccine against tuberculosis, BCG, is the most widely administered vaccine in history, tuberculosis remains one of the leading causes of death and morbidity from infectious diseases worldwide. This paradox is explained by the lack of protection of this vaccine against pulmonary tuberculosis, the responsible form of transmission. New vaccination approaches effective against pulmonary forms of the disease are urgently needed, as they would have the greatest impact on disease transmission globally.

<p c…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by “Spanish Ministry of Economy and Competitiveness” [grant number BIO2014-5258P], “European Commission” by the H2020 programs [grant numbers TBVAC2020 643381].

Materials

Middlebrook 7H9 broth BD 271310
Middlebrook ADC Enrichment BD 211887
Tween 80 Scharlau TW00800250
3-mm diameter Glass Beads Scharlau 038-138003
Middlebrook 7H10 Agar BD 262710
1-ml syringe 26GA 0.45×10 mm BD 301358
GentleMACS dissociator Miltenyi Biotec 130-093-235
C tubes Miltenyi Biotec 130-093-237
M tubes Miltenyi Biotec 130-093-236
Collagenase D Roche 11088882001
DNaseI Applichem A3778,0100
Falcon 70µm Cell Strainer Corning 352350
RPMI 1640 Sigma R0883
Red Blood Cell Lysing Buffer Sigma R7757
GlutaMAX Supplement Gibco 35050-061 100X concentrated
Penicillin-Streptomycin Solution Sigma P4333 100X concentrated
Fetal Calf Serum Biological Industries 04-001-1A
2-Mercaptoethanol Sigma M3148-25ML
Scepter 2.0 Handheld Automated Cell Counter Millipore PHCC20040
Scepter Cell Counter Sensors, 40 µm Millipore PHCC40050
Mycobacterium Tuberculosis – Tuberculin PPD Statens Serum Institut (SSI) 2390
Mouse IFN-γ ELISA development kit  Mabtech 3321-1H
Mouse IL17A ELISA development kit  Mabtech 3521-1H
Brefeldin A Sigma B7651
FITC Rat Anti-Mouse CD4 BD 553047
BD Cytofix/Cytoperm Kit BD 555028
APC-Cy7 Rat Anti-mouse IL-17A BD 560821
APC Mouse Anti-mouse IFNg BD 554413
LACHRYMAL OLIVE LUER LOCK 0.60 x 30 mm. 23G x 1 1/4” UNIMED 27.134 Used as trachea cannula for BAL
high-protein binding polystyrene flat-bottom 96-well plates MAXISORP NUNC 430341
Albumin, from bovine serum Sigma A4503
Goat Anti-Mouse IgA (α-chain specific)−Peroxidase antibody Sigma A4789
3,3′,5,5′-Tetramethylbenzidine (TMB)  Sigma T0440
MyTaq DNA Polymerase Bioline BIO-21107 The kit Includes Buffer 5x

References

  1. Zumla, A., et al. The WHO 2014 global tuberculosis report–further to go. Lancet Glob Health. 3 (1), e10-e12 (2015).
  2. Mangtani, P., et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis. 58 (4), 470-480 (2014).
  3. Aguilo, N., et al. Pulmonary Mycobacterium bovis BCG vaccination confers dose-dependent superior protection compared to that of subcutaneous vaccination. Clin Vaccine Immunol. 21 (4), 594-597 (2014).
  4. Chen, L., Wang, J., Zganiacz, A., Xing, Z. Single intranasal mucosal Mycobacterium bovis BCG vaccination confers improved protection compared to subcutaneous vaccination against pulmonary tuberculosis. Infect Immun. 72 (1), 238-246 (2004).
  5. Giri, P. K., Verma, I., Khuller, G. K. Protective efficacy of intranasal vaccination with Mycobacterium bovis BCG against airway Mycobacterium tuberculosis challenge in mice. J Infect. 53 (5), 350-356 (2006).
  6. Lagranderie, M., et al. BCG-induced protection in guinea pigs vaccinated and challenged via the respiratory route. Tuber Lung Dis. 74 (1), 38-46 (1993).
  7. Gopal, R., et al. Interleukin-17-dependent CXCL13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunol. 6 (5), 972-984 (2013).
  8. Khader, S. A., et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 8 (4), 369-377 (2007).
  9. Aguilo, N., et al. Pulmonary but Not Subcutaneous Delivery of BCG Vaccine Confers Protection to Tuberculosis-Susceptible Mice by an Interleukin 17-Dependent Mechanism. J Infect Dis. , (2015).
  10. Middlebrook, G., Cohn, M. L. Bacteriology of tuberculosis: laboratory methods. Am J Public Health Nations Health. 48 (7), 844-853 (1958).
  11. Brosch, R., et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 99 (6), 3684-3689 (2002).
  12. Kaushal, D., et al. Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis. Nat Commun. 6, 8533 (2015).
  13. Lochhead, J. J., Thorne, R. G. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 64 (7), 614-628 (2012).
  14. Lochhead, J. J., Wolak, D. J., Pizzo, M. E., Thorne, R. G. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab. 35 (3), 371-381 (2015).
  15. Griffiths, K. L., et al. Cholera toxin enhances vaccine-induced protection against Mycobacterium tuberculosis challenge in mice. PLoS One. 8 (10), e78312 (2013).
  16. Hirota, K., et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol. 14 (4), 372-379 (2013).
  17. Jaffar, Z., Ferrini, M. E., Herritt, L. A., Roberts, K. Cutting edge: lung mucosal Th17-mediated responses induce polymeric Ig receptor expression by the airway epithelium and elevate secretory IgA levels. J Immunol. 182 (8), 4507-4511 (2009).

Play Video

Cite This Article
Uranga, S., Marinova, D., Martin, C., Aguilo, N. Protective Efficacy and Pulmonary Immune Response Following Subcutaneous and Intranasal BCG Administration in Mice. J. Vis. Exp. (115), e54440, doi:10.3791/54440 (2016).

View Video