A protocol for the synthesis and characterization of colloids coated with supramolecular moieties is described. These supramolecular colloids undergo self-assembly upon the activation of the hydrogen-bonds between the surface-anchored molecules by UV-light.
Control over colloidal assembly is of utmost importance for the development of functional colloidal materials with tailored structural and mechanical properties for applications in photonics, drug delivery and coating technology. Here we present a new family of colloidal building blocks, coined supramolecular colloids, whose self-assembly is controlled through surface-functionalization with a benzene-1,3,5-tricarboxamide (BTA) derived supramolecular moiety. Such BTAs interact via directional, strong, yet reversible hydrogen-bonds with other identical BTAs. Herein, a protocol is presented that describes how to couple these BTAs to colloids and how to quantify the number of coupling sites, which determines the multivalency of the supramolecular colloids. Light scattering measurements show that the refractive index of the colloids is almost matched with that of the solvent, which strongly reduces the van der Waals forces between the colloids. Before photo-activation, the colloids remain well dispersed, as the BTAs are equipped with a photo-labile group that blocks the formation of hydrogen-bonds. Controlled deprotection with UV-light activates the short-range hydrogen-bonds between the BTAs, which triggers the colloidal self-assembly. The evolution from the dispersed state to the clustered state is monitored by confocal microscopy. These results are further quantified by image analysis with simple routines using ImageJ and Matlab. This merger of supramolecular chemistry and colloidal science offers a direct route towards light- and thermo-responsive colloidal assembly encoded in the surface-grafted monolayer.
חומרים קולואידים Mesostructured למצוא יישום נרחב בתחומי מדע וטכנולוגיה, כמו מערכות מודל לימודי יסוד על חומרים אטומיים ומולקולריים 1,2, כחומרי פוטוניים 3,4, כמו מערכות אספקת סמי 5,6, כמו ציפויים 7 וב ליתוגרפיה עבור דפוסי שטח 8,9. מאז קולואידים lyophobic הם חומרי metastable כי בסופו של דבר לצבור באופן בלתי הפיך בשל האינטראקציות ואן דר ואלס בכל מקום, המניפולציה שלהם לתוך מבני יעד ספציפיים היא קשה לשמצה. רבים אסטרטגיות פותחו לשלוט הרכבה עצמית קולואידים כולל שימוש ותוספות לכוון את האינטראקציות 10,11 או דלדול אלקטרוסטטית 12,13, או גורמים חיצוניים כגון 14 מגנטי או חשמלי 15 שדות. אסטרטגיה חלופית מתוחכמת כדי להשיג שליטה על המבנה, דינמיקה ומכניקה של מערכות אלה היא שנינות functionalization שלהםמולקולות h אינטראקציה באמצעות כוחות ספציפיים כיוונית. כימיה מולקולרית מציעה ארגז כלים מקיף של מולקולות קטנות שמציגות אתר ספציפי, כיוונית ואינטראקציות חזקות עדיין הפיכות, אשר יכול להיות מווסתת בחוזק ידי קוטביות ממסה, טמפרטורת 16 אור. מאז תכונותיהם נחקרו רבות בכמויות בתמיסה, מולקולות אלה הן מועמדים אטרקטיביים לבנות חומרים רכים לשלבים אקזוטיים באופן צפוי. למרות הפוטנציאל הברור של גישה משולבת כגון לתזמר הרכבה קולואידים באמצעות כימיה מולקולרית, דיסציפלינות אלה להתממשק כמעט ולא להתאים את תכונותיהם של חומרים קולואידים mesostructured 17,18.
פלטפורמה מוצקה של קולואידים מולקולריים חייבת למלא שלוש דרישות עיקריות. ראשית, צימוד של המחצית המולקולרית צריך להיעשות בתנאים-מתונים כדי למנוע שפלה. שנית, כוחות פני השטח separations גדול יותר מגע ישיר צריכים להיות נשלט על ידי המוטיבים הקשורים, כלומר קולואידים ציפוי צריכים כמעט באופן בלעדי אינטראקציה באמצעות אינטראקציות בנפח נשלל. לכן, הגודל הפיסיקלי הכימי של קולואידים צריך להיות מותאם לדכא אינטראקציות אחרות טבועות במערכות קולואידים, כגון ואן דר ואלס או כוחות אלקטרוסטטיים. שלישית, אפיון צריך לאפשר ייחוס חד-משמעי של האסיפה לנוכחות של moieties המולקולרי. כדי לעמוד בשלושה תנאים מוקדמים אלה, סינתזה שני שלבים חזקים של קולואידים מולקולריים פותחה (איור 1 א). בצעד ראשון, חלקיקי סיליקה NVOC הפונקציונלית הידרופובי מוכנים עבור פיזור cyclohexane. קבוצת NVOC ניתן בקעה בקלות, מניב חלקיקים פונקציונליים אמינים. תגובתיות הגבוהה של אמינים מאפשרת-functionalization פוסט פשוט עם המחצית המולקולרית הרצוי באמצעות מגוון רחב של מצבי תגובה חריפים. בזאת, אנו יחסי ציבורepare קולואידים מולקולריים ידי functionalization של חרוזים סיליקה עם אלכוהול Stearyl וכן בנזן-1,3,5-tricarboxamide (BTA) נגזרים 20. אלכוהול Stearyl משחק מספר תפקידים חשובים: הוא הופך את organophilic קולואידים וזה מציג repulsions הסטרית לטווח קצר אשר מסייעת להפחית את האינטראקציה הספציפית בין קולואידים 21,22. ואלס כוחות ואן דר מופחתים נוספים בגלל ההתאמה הקרובה בין מקדם השבירה של קולואידים ואת 23 הממס. אור-ו thermoresponsive לטווח קצר כוחות משטח אטרקטיבי מופקים על ידי שילוב של o -nitrobenzyl מוגן BTAs 20. O -nitrobenzyl מחצית היא קבוצה צילום cleavable שחוסמת את היווצרות קשרי מימן בין BTAs הסמוך כאשר המאוגדת ואימידים ב discotics (איור 1b). עם photocleavage ידי אור UV, BTA בתמיסה הוא מסוגל לזהות ולתקשר עם מולקולות BTA זהות דרך ע"ה פי 3מערך אג"ח ydrogen, עם כוח מחייב כי הוא טמפרטורה מאוד תלויה 17. מאז ואן דר ואלס אטרקציות הן מינימאליות עבור חלקיקי סיליקה מצופה Stearyl ב cyclohexane וכן אור וטמפרטורה-עצמאי, הרכבת קולואידים הגירויים מגיבים ציינה חייבת להיות בתיווך BTA.
וידאו מפורט זו ממחיש כיצד לסנתז ולאפיין קולואידים מולקולריים ואיך ללמוד ההרכבה העצמית שלהם על-קרינת UV על ידי מיקרוסקופ confocal. בנוסף, פרוטוקול ניתוח תמונה פשוט להבחין singlets קולואידים מ קולואידים התקבצו וכדי לקבוע את הסכום קולואידים לכל אשכולות מדווחים. הרבגוניות של האסטרטגיה סינתטי מאפשרת בקלות להשתנות גודל החלקיקים, כיסוי השטח וכן מחצית מחייב הציג, אשר פותחת אפיקים חדשים לפיתוח משפחה גדולה של אבני הבניין קולואידים עבור חומרים מתקדמים mesostructured.
כאשר cyclohexane, עם מקדם שבירה של 1.426, משמש כממיס לפיזור-קולואידים BTA, אינטראקציות ואן דר ואלס חלשים מאוד, שכן המדדים השבירה של קולואידים ממס הם כמעט אותו דבר. ראוי לציין, כי הריכוז של קולואידים פונקציונליים המשמש ניסויי SLS ב cyclohexane הוא הרבה יותר גבוה לעומת קולואידים סיליקה ?…
The authors have nothing to disclose.
המחברים מודים ארגון הולנד למחקר מדעי (NWO ECHO-Stip גרנט 717.013.005, NWO vidi גרנט 723.014.006) עבור תמיכה כספית.
APTES | Sigma-Aldrich | ||
FTIC | Sigma-Aldrich | ||
TEOS | Sigma-Aldrich | ||
LUDOX AS-40 | Sigma-Aldrich | Silica particles of 13 nm in radius | |
MilliQ | — | — | 18.2 MΩ·cm at 25 °C |
Ethanol | SolvaChrom | — | |
Ammonia (25% in water) | Sigma-Aldrich | — | |
Chloroform | SolvaChrom | — | |
Cyclohexane | Sigma-Aldrich | — | |
Dimethylformamide (DMF) | Sigma-Aldrich | — | |
Stearyl alcohol | Sigma-Aldrich | — | |
N,N-Diisopropylethylamine (DIPEA) | Sigma-Aldrich | — | |
Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) | Sigma-Aldrich | — | |
Succinimidyl 3-(2-pyridyldithio)propionate (SPDP) | Sigma-Aldrich | — | |
Dithiothreitol (DTT) | Sigma-Aldrich | — | |
NVOC-C11-OH | Synthesized | — | I. de Feijter, 2014 Responsive materials from adaptive supramolecular constructs, Doctoral thesis, Technical University of Eindhoven, The Netherlands |
BTA | Synthesized | — | I. de Feijter, 2014 Responsive materials from adaptive supramolecular constructs, Doctoral thesis, Technical University of Eindhoven, The Netherlands |
Centrifuge | Thermo Scientific | Heraeus Megafuge 1.0 | |
Ultrasound bath | VWR | Ultrasonic cleaner | |
Peristaltic pumps | Harvard Apparatus | PHD Ultra Syringe Pump | |
UV-oven | Luzchem | LZC-a V UV reactor equipped with 8×8 UVA light bulbs (λmax=354 nm) | |
Stirrer-heating plate | Heidolph | MR-Hei Standard | |
Light Scattering | ALV | CGS-3 MD-4 compact goniometer system, equipped with a Multiple Tau digital real time correlator (ALV-7004) and a solid-state laser (λ=532 nm, 40 mW) | |
UV-Vis spectrophotometer | Thermo Scientific | NanoDrop 1000 Spectrophotometer | |
Confocal microscope | Nikon | Ti Eclipse with an argon laser with λexcitation=488 nm | |
Slide spacers | Sigma-Aldrich | Grace BioLabs Secure seal imaging spacer (1 well, diam. × thickness 13 mm × 0.12 mm) | |
Syringes | BD Plastipak | 20 mL syringe | |
Plastic tubing | SCI | BB31695-PE/5 | Ethylene oxide gas sterilizable micro medical tubing |
Pulsating vortex mixer | VWR | Electrical: 120V, 50/60Hz, 150W Speed Range: 500–3000 rpm |