A protocol for the synthesis and characterization of colloids coated with supramolecular moieties is described. These supramolecular colloids undergo self-assembly upon the activation of the hydrogen-bonds between the surface-anchored molecules by UV-light.
Control over colloidal assembly is of utmost importance for the development of functional colloidal materials with tailored structural and mechanical properties for applications in photonics, drug delivery and coating technology. Here we present a new family of colloidal building blocks, coined supramolecular colloids, whose self-assembly is controlled through surface-functionalization with a benzene-1,3,5-tricarboxamide (BTA) derived supramolecular moiety. Such BTAs interact via directional, strong, yet reversible hydrogen-bonds with other identical BTAs. Herein, a protocol is presented that describes how to couple these BTAs to colloids and how to quantify the number of coupling sites, which determines the multivalency of the supramolecular colloids. Light scattering measurements show that the refractive index of the colloids is almost matched with that of the solvent, which strongly reduces the van der Waals forces between the colloids. Before photo-activation, the colloids remain well dispersed, as the BTAs are equipped with a photo-labile group that blocks the formation of hydrogen-bonds. Controlled deprotection with UV-light activates the short-range hydrogen-bonds between the BTAs, which triggers the colloidal self-assembly. The evolution from the dispersed state to the clustered state is monitored by confocal microscopy. These results are further quantified by image analysis with simple routines using ImageJ and Matlab. This merger of supramolecular chemistry and colloidal science offers a direct route towards light- and thermo-responsive colloidal assembly encoded in the surface-grafted monolayer.
Mesostructured colloidal materials find widespread application in science and technology, as model systems for fundamental studies on atomic and molecular materials1,2, as photonic materials3,4, as drug delivery systems5,6, as coatings7 and in lithography for surface patterning8,9. Since lyophobic colloids are metastable materials that eventually aggregate irreversibly due to the omnipresent van der Waals interactions, their manipulation into specific target structures is notoriously difficult. Numerous strategies have been developed to control colloidal self-assembly including the use of additives to tune the electrostatic10,11 or depletion interactions12,13, or external triggers such as magnetic14 or electric15 fields. A sophisticated alternative strategy to achieve control over the structure, dynamics and mechanics of these systems is their functionalization with molecules interacting through specific and directional forces. Supramolecular chemistry offers a comprehensive toolbox of small molecules exhibiting site-specific, directional and strong yet reversible interactions, which can be modulated in strength by solvent polarity, temperature and light16. Since their properties have been studied extensively in bulk and in solution, these molecules are attractive candidates to structure soft materials into exotic phases in a predictable manner. Despite the clear potential of such an integrated approach to orchestrate colloidal assembly via supramolecular chemistry, these disciplines have rarely interfaced to tailor the properties of mesostructured colloidal materials17,18.
A solid platform of supramolecular colloids must fulfill three main requirements. Firstly, coupling of the supramolecular moiety should be done under mild-conditions to prevent degradation. Secondly, surface forces at separations larger than direct contact should be dominated by the tethered motifs, which means that uncoated colloids should nearly exclusively interact via excluded-volume interactions. Therefore, the physico-chemical properties of the colloids should be tailored to suppress other interactions inherent in colloidal systems, such as van der Waals or electrostatic forces. Thirdly, characterization should allow for an unequivocal attribution of the assembly to the presence of the supramolecular moieties. To meet these three prerequisites, a robust two-step synthesis of supramolecular colloids was developed (Figure 1a). In a first step, hydrophobic NVOC-functionalized silica particles are prepared for dispersion in cyclohexane. The NVOC group can be easily cleaved, yielding amine-functionalized particles. The high reactivity of amines enables straightforward post-functionalization with the desired supramolecular moiety using a wide range of mild reaction conditions. Herein, we prepare supramolecular colloids by functionalization of silica beads with stearyl alcohol and a benzene-1,3,5-tricarboxamide (BTA) derivative20. The stearyl alcohol plays several important roles: it makes the colloids organophilic and it introduces short-range steric repulsions which aids to reduce the nonspecific interaction between colloids21,22. van der Waals forces are further reduced because of the close match between the refractive index of the colloids and the solvent23. Light-and thermoresponsive short-range attractive surface forces are generated by incorporation of o-nitrobenzyl protected BTAs20. O-nitrobenzyl moiety is a photo-cleavable group that blocks the formation of hydrogen bonds between adjacent BTAs when incorporated on the amides in the discotics (Figure 1b). Upon photocleavage by UV-light, the BTA in solution is able to recognize and interact with identical BTA molecules through a 3-fold hydrogen bond array, with a binding strength that is strongly temperature dependent17. Since the van der Waals attractions are minimal for stearyl coated silica particles in cyclohexane as well as light- and temperature-independent, the observed stimuli-responsive colloidal assembly must be BTA-mediated.
This detailed video demonstrates how to synthesize and characterize supramolecular colloids and how to study their self-assembly upon UV-irradiation by confocal microscopy. In addition, a simple image analysis protocol to distinguish colloidal singlets from clustered colloids and to determine the amount of colloids per clusters is reported. The versatility of the synthetic strategy allows to readily vary particle size, surface coverage as well as the introduced binding moiety, which opens up new avenues for the development of a large family of colloidal building blocks for mesostructured advanced materials.
1. Synthesis of Core-shell Silica Particles
Note: Silica particles are synthesized according to the following procedure, which is based on the Stöber method24,25.
2. Functionalization of Silica Colloids
3. Static Light Scattering Measurements (SLS)
Note: Use non-fluorescent particles, since the fluorescent core absorbs light of the same wavelength as the incident laser light of conventional light scattering equipment.
4. Quantification of the Number of Active Sites Per Particle
Note: Use small particles of 13 nm in radius (with a larger surface-to-volume ratio).
5. Monitor Colloidal Assembly by Confocal Microscopy
Note: Use core-shell silica particles (with a fluorescent core and a non-fluorescent shell).
6. Image Analysis
Given that the two-step procedure used to synthesize the supramolecular colloids (Figure 1a), couples the BTA- derivatives (Figure 1b) in a second step at room temperature and in mild-reaction conditions, its stability is ensured.
Figure 1. Scheme of the synthesis of supramolecular colloids. A) Coupling of the stearyl alcohol and the NVOC-protected alkyl chain to the silica colloids, followed by amine deprotection upon irradiation by UV-light in a UV-oven and subsequent coupling of the BTA molecule. B) Structure of the benzene-1,3,5-tricarboxamide (BTA) derivative used. Please click here to view a larger version of this figure.
By fitting the static light scattering (SLS) data, the refractive index of bare and stearyl alcohol-coated colloids are obtained. We find nsilica = 1.391 and nsilica@stearyl alcohol = 1.436 (Figure 2). This clearly shows that surface functionalization has an impact on the refractive index of the colloids. The chemical composition of the monolayer of stearyl alcohol coated colloids and the BTA-colloids is highly similar since the molar fraction of BTA is at most 0.2. Therefore, we assume that the refractive index of the BTA-colloids is close to nsilica@stearyl alcohol = 1.436.
Figure 2. Static light scattering measurements of silica colloids. Intensity of scattered light as a function of the detection angle θ for A) bare silica particles in water and B) stearyl alcohol-coated particles in cyclohexane. Dashed lines are the fits to the experimental data points. Please click here to view a larger version of this figure.
Using the reaction scheme shown in Figure 3, small particles functionalized with a 20/80 NVOC-C11-OH/stearyl alcohol molar ratio result in 1 amine per 46.4 nm2 on their surface. This number can in turn be correlated to the number of supramolecular moieties that can be coupled, which we refer to as the multivalency of the particles.
Figure 3. Assessment of the amount of active sites per particle. Procedure followed to determine the amount of amines per particle: amine-functionalized colloids are reacted with SPDP. Hereafter, DTT is added to the system to cleave off the pyridine-2-thione group, which can be detected by photospectrometry at its absorption maximum λmax = 293 nm in DMF. Please click here to view a larger version of this figure.
In the confocal images, most of the supramolecular colloids of the dispersion before irradiation with UV light are singlets (Figure 4, top). Interestingly, upon irradiation, an evolution from the singlet state to the clustered state is observed (Figure 4 middle and bottom). Image analysis is used to monitor the aggregation in a more quantitative manner. A sharp decrease in the number of singlets from 80% down to 9% is observed upon UV-irradiation within the first 5 minutes.
Figure 4. Image processing procedure. Original confocal microscopy images, binary images and the area of singlets for samples deprotected for (top) 0 min, (middle) 15 sec and (bottom) 5 min. The scale bar represents 10 µm. Please click here to view a larger version of this figure.
When cyclohexane, with a refractive index of 1.426, is used as a solvent to disperse the BTA-colloids, van der Waals interactions are very weak, since the refractive indices of colloids and solvent are nearly the same. Note that the concentration of functionalized colloids used for the SLS experiments in cyclohexane is much higher compared to the bare silica colloids in water. This is necessary to obtain a sufficiently strong scattering due to the low contrast as the refractive indices are almost matched. Trace amounts of water in the cyclohexane samples are immediately detected, albeit indirectly, by non-negligible clustering due to capillary forces. Therefore, it is of utmost importance to ensure that the colloids are free of water during all synthesis steps by drying them in vacuo for long periods of time as described in the protocol.
Given that the method used to quantify the amines analyses the amount of pyridine-2-thione cleaved from the particles, it circumvents artifacts due to scattering of the particles that could be faced using other techniques such as NMR. Assuming equal surface density for small and large particles, the detected amine density for the small particles corresponds to approximately 24,350 amines per big colloids of 300 nm in radius. Interestingly, the introduced approach allows to regulate the multivalency of the supramolecular colloids by simply changing the NVOC-C11-OH / stearyl alcohol molar ratio during the first functionalization step. Such variation in the multivalency can be further quantified by the same amine quantification procedure.
The successful dispersion of the colloids in singlets before light activation, observed by confocal microscopy, is in line with very weak van der Waals interactions and negligible hydrogen-bonding in cyclohexane prior to photocleavage of the protective o-nitrobenzyl group. Hence, photo-induced clustering can be readily attributed to the supramolecular moieties. This is crucial as we aim to direct clustering via supramolecular forces. Cleavage of the o-nitrobenzyl group by UV-light indeed allows for BTAs anchored onto different colloids to interact, hence promoting colloidal self-assembly as confirmed by the formation of clusters.
In conclusion, we have demonstrated a straightforward method to couple BTA-derivatives onto silica particles in a controlled manner. The behavior of the resulting supramolecular colloids is successfully governed by the attractive interactions between surface-grafted molecules, namely intermolecular hydrogen-bonding interactions. This methodology can readily be extended to synthesize a broad range of different supramolecular colloids decorated with other types of supramolecular moieties. Hence, the protocol described herein paves the way for the development of a new family of building blocks to form mesostructured colloidal materials.
The authors have nothing to disclose.
The authors acknowledge The Netherlands Organization for Scientific research (NWO ECHO-STIP Grant 717.013.005, NWO VIDI Grant 723.014.006) for the financial support.
APTES | Sigma-Aldrich | ||
FTIC | Sigma-Aldrich | ||
TEOS | Sigma-Aldrich | ||
LUDOX AS-40 | Sigma-Aldrich | Silica particles of 13 nm in radius | |
MilliQ | — | — | 18.2 MΩ·cm at 25 °C |
Ethanol | SolvaChrom | — | |
Ammonia (25% in water) | Sigma-Aldrich | — | |
Chloroform | SolvaChrom | — | |
Cyclohexane | Sigma-Aldrich | — | |
Dimethylformamide (DMF) | Sigma-Aldrich | — | |
Stearyl alcohol | Sigma-Aldrich | — | |
N,N-Diisopropylethylamine (DIPEA) | Sigma-Aldrich | — | |
Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) | Sigma-Aldrich | — | |
Succinimidyl 3-(2-pyridyldithio)propionate (SPDP) | Sigma-Aldrich | — | |
Dithiothreitol (DTT) | Sigma-Aldrich | — | |
NVOC-C11-OH | Synthesized | — | I. de Feijter, 2014 Responsive materials from adaptive supramolecular constructs, Doctoral thesis, Technical University of Eindhoven, The Netherlands |
BTA | Synthesized | — | I. de Feijter, 2014 Responsive materials from adaptive supramolecular constructs, Doctoral thesis, Technical University of Eindhoven, The Netherlands |
Centrifuge | Thermo Scientific | Heraeus Megafuge 1.0 | |
Ultrasound bath | VWR | Ultrasonic cleaner | |
Peristaltic pumps | Harvard Apparatus | PHD Ultra Syringe Pump | |
UV-oven | Luzchem | LZC-a V UV reactor equipped with 8×8 UVA light bulbs (λmax=354 nm) | |
Stirrer-heating plate | Heidolph | MR-Hei Standard | |
Light Scattering | ALV | CGS-3 MD-4 compact goniometer system, equipped with a Multiple Tau digital real time correlator (ALV-7004) and a solid-state laser (λ=532 nm, 40 mW) | |
UV-Vis spectrophotometer | Thermo Scientific | NanoDrop 1000 Spectrophotometer | |
Confocal microscope | Nikon | Ti Eclipse with an argon laser with λexcitation=488 nm | |
Slide spacers | Sigma-Aldrich | Grace BioLabs Secure seal imaging spacer (1 well, diam. × thickness 13 mm × 0.12 mm) | |
Syringes | BD Plastipak | 20 mL syringe | |
Plastic tubing | SCI | BB31695-PE/5 | Ethylene oxide gas sterilizable micro medical tubing |
Pulsating vortex mixer | VWR | Electrical: 120V, 50/60Hz, 150W Speed Range: 500–3000 rpm |