Micropartículas verter à membrana celular (MPs) são vesículas biológicas activas que podem ser isolados e os seus efeitos patofisiológicos investigados em vários modelos. Descrevemos aqui um método para a geração de MPs derivadas de linfócitos T (LMPS) e para demonstrar o seu efeito pró-apoptóticos em células epiteliais das vias respiratórias.
O interesse nas funções biológicas de células derivadas de vesículas de membrana em comunicação célula-célula tem aumentado nos últimos anos. As micropartículas (MP) são um tal tipo de vesículas, que variam em diâmetro de 0,1 mm a 1 mm, e normalmente eliminados da membrana plasmática de células eucarióticas submetidos a activação ou a apoptose. Aqui descreve-se a geração de linfócitos T derivados de micropartículas (LMPS) a partir de células CEM T apoptóticas estimuladas com actinomicina D. LMPS são isoladas através de um processo de múltiplos passos de centrifugação diferencial e caracterizadas por citometria de fluxo. Este protocolo também apresenta um método de detecção da morte celular in situ para demonstrar o efeito pró-apoptótica de LMPS em células epiteliais brônquicas derivadas de rato primários respiratórias explantes de tecido brônquico. Os métodos aqui descritos proporcionam um procedimento reprodutível para o isolamento de quantidades abundantes de LMPS de linfócitos apoptóticos in vitro. LMPS derivadodeste modo pode ser utilizado para avaliar as características de vários modelos de doenças, e para a farmacologia e toxicologia de teste. Dado que o epitélio das vias aéreas como uma barreira física e funcional protectora entre o ambiente externo e o tecido subjacente, o uso de explantes de tecido brônquico, em vez de linhas de células epiteliais imortalizadas fornece um modelo eficaz para investigações que requerem tecido vias aéreas.
Microparticles (MPs) are biologically active submicron membrane vesicles released following cell activation or apoptosis. MPs are derived from both healthy and damaged cells and are implicated in many physiological and pathological processes.1 MPs have been detected not only in human plasma, but also in inflammatory and apoptotic tissue. The biological utility of cell membrane–derived MPs has been demonstrated in various settings, including cell signalling models and as pharmacological tools.2,3 We previously demonstrated that LMPs derived from T lymphocytes following actinomycin D stimulation (to induce apoptosis) suppress angiogenesis and inhibit endothelial cell survival and proliferation.4,5 The antiangiogenic effects of LMPs may vary significantly depending on the stimuli used to activate T lymphocytes in vitro.6
The airway epithelium functions as a protective physical and functional barrier. Increased numbers of T lymphocytes in the airway can contribute to cell damage and airway inflammation.7 We have shown that LMPs induce apoptosis of human bronchial epithelial cells,8 which indicated LMPs may change barrier function of bronchial epithelium in vivo. Apoptotic cells can be identified using the TUNEL method, which detects in situ DNA fragmentation.
The overall goal of this protocol is to illustrate the in vitro production of LMPs from a T lymphocyte cell line, and to demonstrate their proapoptotic effect on airway epithelial cells. In situ cell death detection demonstrated that LMPs strongly induce airway bronchial epithelial cell death, suggesting that LMPs-mediated injury to the airway epithelium may impact barrier function of the damaged epithelium.
MPs são mediadores ativos de conversas cruzadas intercelular e seu estudo é promissor em muitas áreas da ciência. 11 Este estudo apresentou um protocolo detalhado para in vitro geração em larga escala de LMPS derivado de uma linha de células T por apoptose. Estas MPs expressar um grande repertório de moléculas de linfócitos e são biologicamente implicado na regulação da homeostase celular e tecidual. No entanto, LMPS derivadas de diferentes fontes podem ser biologicamente diferente. <sup…
The authors have nothing to disclose.
Este trabalho é apoiado por subsídios da Canadian Institutes of Health Research (178.918), Fonds de recherche en santé du Québec – Visão Rede de Investigação em Saúde.
LMPs production and characterization | |||
CEM T cells | ATCC | CCL-119 | |
X-VIVO 15 medium | Cambrex, Walkersville | 04-744Q | |
Flask T75 | Sarstedt | 83.1813.502 | |
Flask T175 | Sarstedt | 83.1812.502 | |
Actinomycin D | Sigma Chemical Co. | A9415-2mg | |
PBS | Lifetechnologies | 14190-144 | |
0.22µm filter | Sarstedt | 83.1826.001 | |
Annexin-VCy5 | BD Pharmagen | 559933 | |
FACS flow solution | BD Bio-sciences | 342003 | |
Fluorescent microbeads (1 um) | Molecular Probes | T8880 | |
Polysterene counting beads (7 um) | Bangs laboratories | PS06N/6994 | |
Polypropylene FACS tubes | Falcon | 352058 | |
1 ml pipet | Fisher | 13-678-11B | |
5 ml pipet | Falcon | 357543 | |
25 ml pipet | Ultident | DL-357551 | |
1,5 ml conical polypropylene micro tube | Sarstedt | 72.690 | |
15 ml conical polypropylene tube | Sarstedt | 62.554.205 | |
50 ml conical polypropylene tube | Sarstedt | 62.547.205 | |
50 ml high speed polypropylene copolymer tube | Nalgene | 3119-0050 | |
250 ml high speed polypropylene bottle | Beckman | 356011 | |
Protein assay (Bradford assay) | Bio-Rad Laboratories | 500-0006 | |
Protein assay standard II | Bio-Rad Laboratories | 500-0007 | |
Test tube 16×100 | VWR | 47729-576 | |
Test tube 12×75 | Ultident | 170-14100005B | |
Cell incubator | Mandel | Heracell 150 | |
Low speed centrifuge | IEC | Centra8R | |
High speed centrifuge | Beckman | Avanti J8 | |
High speed rotor for 250ml bottle | Beckman | JLA16.250 | |
High speed rotor for 50ml tube | Beckman | JA30.50 | |
Fow cytometry | BD Bio-sciences | FACS Calibur | |
Spectrophotometer | Beckman | Series 600 | |
Bronchial tissue explants and sections | |||
C57BL/6 mice (5-7 weeks old) | Charles River Laboratories, Inc. | ||
Mouse Airway PrimaCell™ System: | CHI Scientific, Inc. | 2-82001 | |
Rib-Back Carbon Steel Scalpel Blades | Becton Dickinson AcuteCare | 371310 | #10 |
Scalpel Handle | Fine Science Tools Inc. | 10003-12 | #7 |
phase-contrast inverted microscope | Olympus Optical CO., LTD. | CK2 | |
high O2 gas mixture | VitalAire Canada Inc. | ||
modular incubator chamber | Billups-Rothenberg Inc. | MIC-101 | |
MaxQ 4000 incubated orbital shaker | Barnstead Lab-Line, | SHKA4000-7 | |
12-well tissue culture plate | Becton Dickinson and Company | 353043 | |
Plastic tissue culture dishes (100 mm) | Sarstedt, Inc. | 83.1802 | |
Surgical scissors | Fine Science Tools Inc. | 14060-09 | Straight, sharp, 9cm longth |
Half-curved Graefe forceps | Fine Science Tools Inc. | 11052-10 | |
humidified CO2 incubator | Mandel Scientific Company Inc. | SVH-51023421 | |
Histopathological examination | |||
formalin formaldehyde | Sigma-Aldrich, Inc. | HT5011 | |
paraffin | Fisher scientific International, Inc. | T555 | |
ethyl alcohol | Merck KGaA, Darmstadt | EX0278-1 | |
glutaraldehyde | Sigma-Aldrich, Inc. | G6403 | |
Cacodylate | Sigma-Aldrich, Inc. | 31533 | |
microscope slides | VWR Scientific Inc. | 48300-025 | 25x75mm |
Xylene | Fisher scientific International, Inc. | X5-4 | |
Mayer's hematoxylin | Sigma-Aldrich, Inc. | MHS16 | Funnel with filter paper |
HCl | Fisher scientific International, Inc. | A144s-500 | |
eosin | Sigma-Aldrich, Inc. | HT110116 | Funnel with filter paper |
Permount™ Mounting Medium | Thermo Fisher Scientific Inc. | SP15-100 | |
glass coverslip | surgipath medical industries, Inc. | 84503 | 24×24 #1 |
TUNEL detection kit | In Situ Cell Death Detection, POD | 11 684 817 910 | |
oven | Despatch Industries Inc. | LEB-1-20 | |
rotary Microtome | Leica Microsystems Inc. | RM2145 | |
filter paper | Whatman International Ltd. | 1003150 | #3 |
Microscope | Nikon Imaging Japan Inc. | E800 | |
staining dish complete | Wheaton Industries, Inc. | 900200 | including dish, rack, cover |
1.5 ml eppendorf tube | Sarstedt Inc. | 72.69 | 39x10mm |
Orbital and Reciprocating Water Bath | ExpotechUSA | ORS200 | |
phosphate buffered saline | GIBCO | 14190-144 | |
fume hood | Nicram RD Service | 3707E |