Biz tasarım, imalat, ve geleneksel photoconductive yayıcılar göre büyüklüğü daha yüksek Terahertz güç seviyeleri iki sipariş sunuyoruz plasmonik photoconductive yayıcılar, deneysel karakterizasyonu için yöntemler açıklanmaktadır.
Bu videoyu yazıda Terahertz dalgaları üretmek için son derece etkili bir yöntem ayrıntılı bir gösteri sunmak. Bizim teknik Terahertz nesil 1-8 için en sık kullanılan tekniklerden biri olmuştur photoconduction, dayanmaktadır. Bir foto-iletken verici olarak Terahertz nesil bir darbeli veya heterodyned lazer aydınlatma ile ultra hızlı iletken pompalama elde edilir. Pompa lazer zarf aşağıdaki kaynaklı fotoakım, Terahertz radyasyon oluşturmak için iletken temas elektrotlara bağlı bir anten ışıma Terahertz yönlendirilir. Bir photoconductive yayıcı kuantum verimi teorik olarak 100% ulaşabilirsiniz rağmen, geleneksel Fotokondüktörlerin ve temas elektrotlar fotoğraf üretilen taşıyıcıların nispeten uzun taşıma yolu uzunlukları ciddi kendi kuantum verimi sınırlıdır. Ayrıca, taşıyıcı tarama etkisi ve ısıl bozunmaya katı maksimum çıkış p sınırlamakOver geleneksel photoconductive Terahertz kaynaklarının. Geleneksel photoconductive Terahertz vericilerin kuantum verimliliği sınırlamaları çözmek için, aynı anda yüksek kuantum verimli ve çok hızlı çalışmak üzere özel olarak bir plasmonik kişi elektrot yapılandırma içeren yeni bir photoconductive verici konsept geliştirdik. Nano ölçekli plasmonik temas elektrotları kullanarak, önemli ölçüde geleneksel Fotokondüktörlerin 9 göre iletken temas elektrotlar için ortalama fotoğraf oluşturulan taşıyıcı taşıma yolu azaltır. Bizim yöntem aynı zamanda yüksek optik pompa güçleri de taşıyıcı tarama etkisi ve termal arıza önleyerek maksimum Terahertz radyasyon gücü artırma, antene kapasitif yükleme önemli bir artış olmadan artan iletken aktif alan sağlar. Içeren plasmonik temas elektrotlar, biz geleneksel photoconductive te optik-to-Terahertz güç dönüşüm verimliliği arttırmak işlemini göstermektedir50 10 kat rahertz verici.
Biz iki mertebe ile optik-to-Terahertz dönüşüm verimliliği artırmak için bir plasmonik kişi elektrot yapılandırması kullanan bir roman photoconductive Terahertz verici sunuyoruz. Bizim teknik yüksek kuantum verimliliği ve geleneksel Fotokondüktörlerin bir ultra hızlı çalışması arasındaki doğal dengeyi kaynaklanan geleneksel photoconductive Terahertz yayıcılar, yani düşük çıkış gücü ve düşük güç verimliliği, en önemli sınırlamalar giderir.
Bu birdirbir performans artışı yol açtı tasarım en önemli yeniliklerden biri de temas elektrotlar yakın fotoğraf oluşturulan taşıyıcı çok sayıda, biriken bir kişi elektrot yapılandırma tasarlamaktır onlar içinde toplanabilir böyle bir alt- pikosaniye zaman ölçeği. Diğer bir deyişle, foto iletken ultra hızlı çalışma ve yüksek kuantum verimliliği arasındaki dengeyi fotoğraf cins mekansal manipülasyon tarafından yönetilmektedirTed taşıyıcılar. Plasmonik temas elektrotlar (1) plasmonik elektrotlar (kırınım sınırı aşan), metal temas da (2) olağanüstü ışık güçlendirme ve yarı iletken arayüzü 10, 11 fotoğraf emici arasında nano cihazın aktif alanlara ışık hapsi izin vererek bu eşsiz özelliği sunuyor. Çözüm bir diğer önemli özelliği bu Terahertz yayılan anten parazit yükleme önemli bir artış olmadan büyük iletken aktif alanları barındırır olmasıdır. Kullanan büyük iletken aktif alanlarda geleneksel photoconductive yayıcılar gelen maksimum radyasyon gücü için nihai sınırlamalar taşıyıcı tarama etkisi ve termal arıza, azaltılması sağlar. Bu video makalede yöneten fizik, sayısal modelleme ve deneysel doğrulama anlatarak bizim sunulan çözüm benzersiz özellikleri üzerinde yoğunlaşmıştır. Biz deneysel bir plasmonik phot 50 kat daha yüksek Terahertz güçler göstermekolmayan plasmonik temas elektrotlar ile benzer bir foto-iletken yayıcı ile karşılaştırıldığında oconductive yayıcı.
Bu video makalede, biz iki mertebe ile optik-to-Terahertz dönüşüm verimliliği artırmak için bir plasmonik kişi elektrot yapılandırması kullanan bir roman photoconductive Terahertz oluşturma tekniği mevcut. Sunulan plasmonik photoconductive yayıcılar gelen Terahertz radyasyon gücü önemli bir artış gelecekte yüksek hassasiyetli Terahertz görüntüleme, spektroskopi ve spektrometresi sistemleri gelişmiş kimyasal tanımlama için kullanılan, tıbbi görüntüleme, biyolojik algılama, astronomi, atm…
The authors have nothing to disclose.
Yazarlar LT-GaAs yüzey sağlamak için Picometrix teşekkür ve minnetle Michigan Uzay Grant Konsorsiyumu, Dr John Albrecht (sözleşme # N66001-10-1-4027), NSF KARİYER tarafından yönetilen DARPA Genç Fakültesi Ödülü mali destek kabul olur Ödül Dr Samir El-Gazali (sözleşme # N00014-11-1-0096), Dr Paul Maki (sözleşme # N00014-12-1-0947) tarafından yönetilen ONR Genç Araştırmacı Ödülü, ve tarafından yönetilen ARO Genç Araştırmacı Ödülü tarafından yönetilen Dr Dev Palmer (sözleşme # W911NF-12-1-0253).
Reagent | |||
Polymethyl Methacrylate (PMMA) | MicroChem | 950K PMMA A4 | |
Hexamethyldisilazane (HMDS) | Shin-Etsu MicroSI | MicroPrime HP Primer | |
Optical Photoresist | Dow Chemical | Megaposit SPR 220-3.0 | |
Photoresist Developer | AZ Electronic Materials | AZ 300 MIF Developer | |
Methyl Iso-Butyl Keytone (MIBK) | Avantor Performance Materials | 9322-03 | |
Equipment | |||
Ti:Sapphire Mode-Locked Laser | Coherent | MIRA 900D V10 XW OPT 110V | |
Pyroelectric Detector | Spectrum Detector | SPI-A-65 THz | |
Electron-Beam Lithography Tool | JEOL | JBX-6300-FS | |
Plasma Stripper | Yield Engineering Systems | YES-CV200RFS | |
Metal Evaporator | Denton Vacuum | SJ-20 | |
Plasma Enhanced Chemical Vapor Deposition Tool | GSI | GSI PECVD System | |
Projection Lithography Stepper | GCA | AutoStep 200 | |
Reactive Ion Etcher | LAM Research | 9400 | |
Parameter Analyzer | Hewlett Packard | 4155A | |
Optical Chopper | Thorlabs | MC2000 | |
Lock-in Amplifier | Stanford Research Systems | SR830 | |
Electrooptic Modulator | Thorlabs | EO-AM-NR-C2 | |
Motorized Linear Stage | Thorlabs | NRT100 |