我々は、設計、製造、および従来型の光導電性エミッタに比べて大きさより高いテラヘルツパワーレベルの二桁を提供プラズモン光導電性エミッタの実験的特性評価のための方法を記載している。
このビデオの記事では、テラヘルツ波を発生させるために非常に効率的な方法の詳細なデモを提示します。我々の技術は、テラヘルツ生成1-8のための最も一般的に使用される技術の一つとなっている光伝導に基づいている。感光エミッタにおけるテラヘルツパルス発生をヘテロダイン又はレーザ照射による超高速光導電体を励起することによって達成される。ポンプレーザのエンベロープに追従誘起光電流は、テラヘルツ放射を生成するために感光コンタクト電極に接続されたテラヘルツ放射アンテナに送られる。感光エミッタの量子効率が理論的に100%に達することができるが、従来の光導電体のコンタクト電極に光生成キャリアの比較的長い輸送経路の長さは厳しく、その量子効率を制限してきた。また、キャリアスクリーニング効果と熱破壊は厳密には最大出力pを制限するとower従来の光伝導テラヘルツ光源の。従来の光導テラヘルツ放射体の量子効率の限界に対処するために、我々は、同時に高い量子効率および超高速動作を提供するプラズモンコンタクト電極構造を組み込んだ新たな感光エミッタ概念を開発した。ナノスケールプラズモンコンタクト電極を用いることにより、我々はかなり従来の感光体9と比較して、感光コンタクト電極に平均光生成キャリア輸送路を低減する。本手法はまた、高い光ポンプパワーでキャリアスクリーニング効果と熱破壊を防止することにより、最大のテラヘルツ放射電力を昇圧し、アンテナに容量性負荷が大幅に増大させることなく、感光体活性領域を増加させることができる。プラズモンコンタクト電極を組み込むことにより、従来の感光TEの光 – テラヘルツ電力変換効率を高めることを実証50 10倍rahertzエミッタ。
我々は、2桁光 – テラヘルツ変換効率を高めるためにプラズモン接触電極構成を使用して新規な感光テラヘルツエミッタを提示する。我々の技術、すなわち、従来の光導電テラヘルツエミッタ、高い量子効率と、従来の感光体の超高速動作の間の固有のトレードオフに由来する低出力電力と貧しい電力効率の最も重要な制限に対処しています。
このリープフロッグ性能改善につながった私たちの設計における重要なノベルティの一つは、サブ内に収集することができるように、コンタクト電極に近接した光生成キャリアを多数蓄積するコンタクト電極構造を設計することであるピコ秒時間スケール。換言すれば、感光体超高速動作、高量子効率とのトレードオフは、光属の空間操作によって緩和されるテッドキャリア。プラズモニック接触電極(1)プラズモン電極(回折限界を超えて)、金属接触で(2)異常 光強化と半導体インターフェース10、11を光吸収の間にナノスケールデバイスの活性領域への光閉じ込めを可能にすることにより、このユニークな機能を提供します。当社のソリューションのもう一つの重要な属性は、テラヘルツ放射アンテナに寄生負荷のかなりの増加することなく、大きな感光アクティブ領域に対応することです。活用大感光アクティブ領域は、従来の光導電性エミッタからの最大放射電力のための究極の限界である、キャリアスクリーニング効果と熱破壊を軽減できます。このビデオの記事は、支配物理学、数値モデリング、および実験的検証を記述することで我々の提示ソリューションのユニークな属性に集中している。我々は実験的にプラズモニックなPhotから50倍も高いテラヘルツパワーを発揮非プラズモニック接触電極と同様の光導電性エミッタと比較しoconductiveエミッタ。
このビデオ本稿では、2桁光 – テラヘルツ変換効率を高めるためにプラズモン接触電極構成を使用して新規な感光テラヘルツ生成手法を提案する。提示プラズモン光導電性エミッタからのテラヘルツ放射電力の大幅な増加は、将来の高感度テラヘルツイメージング、分光法と高度な化学物質の識別、医療用画像処理、生物学的センシング、天文学、大気センシング、セキュリティスクリーニン…
The authors have nothing to disclose.
著者は、LT-GaAs基板を提供するためPicometrixに感謝したいとありがたくミシガンスペースグラントコンソーシアム、ドクタージョンアルブレヒト(契約#N66001-10-1から4027)、NSFキャリアによって管理DARPAヤング学部賞からの財政支援を認めるであろう賞は、博士サミールエルGhazaly(契約#N00014-11-1から0096)、ポール博士真紀(契約#N00014-12-1から0947)によって管理ONR若手研究賞、およびによって管理ARO若手研究賞によって管理博士が開発パーマー(契約#W911NF-12-1から0253)。
Reagent | |||
Polymethyl Methacrylate (PMMA) | MicroChem | 950K PMMA A4 | |
Hexamethyldisilazane (HMDS) | Shin-Etsu MicroSI | MicroPrime HP Primer | |
Optical Photoresist | Dow Chemical | Megaposit SPR 220-3.0 | |
Photoresist Developer | AZ Electronic Materials | AZ 300 MIF Developer | |
Methyl Iso-Butyl Keytone (MIBK) | Avantor Performance Materials | 9322-03 | |
Equipment | |||
Ti:Sapphire Mode-Locked Laser | Coherent | MIRA 900D V10 XW OPT 110V | |
Pyroelectric Detector | Spectrum Detector | SPI-A-65 THz | |
Electron-Beam Lithography Tool | JEOL | JBX-6300-FS | |
Plasma Stripper | Yield Engineering Systems | YES-CV200RFS | |
Metal Evaporator | Denton Vacuum | SJ-20 | |
Plasma Enhanced Chemical Vapor Deposition Tool | GSI | GSI PECVD System | |
Projection Lithography Stepper | GCA | AutoStep 200 | |
Reactive Ion Etcher | LAM Research | 9400 | |
Parameter Analyzer | Hewlett Packard | 4155A | |
Optical Chopper | Thorlabs | MC2000 | |
Lock-in Amplifier | Stanford Research Systems | SR830 | |
Electrooptic Modulator | Thorlabs | EO-AM-NR-C2 | |
Motorized Linear Stage | Thorlabs | NRT100 |