Nous décrivons des méthodes pour la conception, la fabrication et la caractérisation expérimentale des émetteurs photoconductives plasmoniques, qui offrent deux ordres de niveaux de puissance plus élevés térahertz de grandeur par rapport aux émetteurs photoconductives conventionnels.
Dans cet article, nous présentons la vidéo d'une démonstration détaillée d'une méthode très efficace pour générer des ondes térahertz. Notre technique est basée sur photoconduction, qui a été l'une des techniques les plus couramment utilisées pour la génération térahertz 1-8. génération d'un émetteur térahertz en photoconductrice est réalisée en pompant un photoconducteur ultra-rapide avec un éclairage laser pulsé ou hétérodyne. Le photocourant induit, qui fait suite à l'enveloppe du laser de pompage, est acheminée à une antenne de rayonnement terahertz connecté aux électrodes en contact avec les photoconducteurs pour générer un rayonnement térahertz. Bien que le rendement quantique d'un émetteur photoconducteur peut théoriquement atteindre 100%, les longueurs des trajets de transport relativement longs des porteurs photo-générés pour les électrodes de contact de photoconducteurs classiques ont sévèrement limité leur efficacité quantique. En outre, l'effet de dépistage des porteurs et la dégradation thermique limitent strictement la sortie maximale peurs de sources térahertz photoconductives conventionnels. Pour remédier aux limitations de l'efficacité quantique d'émetteurs térahertz photoconductives conventionnels, nous avons développé un nouveau concept d'émetteur photoconductrice qui intègre une configuration d'électrodes de contact plasmonique à offrir quantique élevé d'efficacité et le fonctionnement ultra-rapide en même temps. En utilisant des électrodes de contact plasmoniques à l'échelle nanométrique, nous réduisons considérablement la photo généré par chemin de transport de porteurs moyenne à des électrodes de contact photoconducteurs par rapport à photoconducteurs conventionnels 9. Notre méthode permet également augmenter la surface active du photoconducteur sans une augmentation considérable de la charge capacitive à l'antenne, augmentant la puissance maximale du rayonnement térahertz en empêchant l'effet de dépistage des porteurs et la dégradation thermique à des puissances de pompage optique. En intégrant des électrodes de contact plasmoniques, nous démontrons l'amélioration de l'efficacité de conversion de puissance optique-terahertz d'un photoconducteur te conventionnelrahertz émetteur par un facteur de 50 10.
Nous présentons une nouvelle émetteur térahertz photoconductrice qui utilise une configuration d'électrodes de contact plasmonique de renforcer l'efficacité de conversion optique-terahertz par deux ordres de grandeur. Notre technique porte sur les limitations les plus importantes d'émetteurs classiques photoconductives terahertz, à savoir faible puissance de sortie et une mauvaise efficacité énergétique, qui proviennent du compromis inhérent entre haute efficacité quantique et le fonctionnement ultra-rapide de photoconducteurs conventionnels.
Une des nouveautés clés de notre conception qui ont conduit à cette amélioration de la performance saute-mouton est de concevoir une configuration d'électrodes de contact qui accumule un grand nombre de porteurs photo-générés à proximité des électrodes de contact, de sorte qu'ils peuvent être collectées dans un sous- picoseconde calendrier. En d'autres termes, le compromis entre le fonctionnement ultra-rapide du photoconducteur et haute efficacité quantique est atténué par la manipulation spatiale de la photo-genrestransporteurs ted. Électrodes de contact plasmoniques offrent cette capacité unique par (1) permettant confinement de la lumière dans les zones actives du dispositif nanométrique entre les électrodes plasmoniques (au-delà de la limite de diffraction), (2) l'amélioration lumière extraordinaire au contact du métal et photo-absorbant l'interface semi-conducteur 10, 11. Une autre caractéristique importante de notre solution est qu'elle accueille de grandes zones actives photoconducteurs sans une augmentation considérable de la charge parasitaire à l'antenne de rayonnement térahertz. Utilisant des grandes zones actives photoconducteurs permettent d'atténuer les effets de dépistage des porteurs et la dégradation thermique, qui sont les limites ultimes de la puissance maximale du rayonnement des émetteurs photoconductives conventionnels. Cet article de la vidéo se concentre sur les attributs uniques de notre solution présentée en décrivant la physique qui régissent, la modélisation numérique et la vérification expérimentale. Nous démontrons expérimentalement 50 fois plus élevé pouvoirs terahertz d'une phot plasmoniqueémetteur oconductive en comparaison avec un émetteur photoconducteur similaire avec des électrodes de contact non-plasmoniques.
Dans cet article, vidéo, nous vous présentons une nouvelle technique de production d'terahertz photoconductrice qui utilise une configuration d'électrodes de contact plasmonique de renforcer l'efficacité de conversion optique-terahertz par deux ordres de grandeur. L'augmentation significative de la puissance de rayonnement térahertz des émetteurs photoconductives plasmoniques présentés est très précieux pour l'avenir haute sensibilité terahertz imagerie, la spectroscopie et de systèmes de…
The authors have nothing to disclose.
Les auteurs tiennent à remercier Picometrix pour fournir le substrat LT-GaAs et reconnaître avec gratitude le soutien financier du Michigan Espace Grant Consortium, la DARPA Prix du jeune Faculté géré par le Dr John Albrecht (contrat # N66001-10-1-4027), la NSF CAREER Prix gérée par le Dr Samir El-Ghazaly (contrat # N00014-11-1-0096), l'ONR Young Investigator Award géré par le Dr Paul Maki (contrat # N00014-12-1-0947), et ARO Young Investigator Award géré par Dr Dev Palmer (contrat # W911NF-12-1-0253).
Reagent | |||
Polymethyl Methacrylate (PMMA) | MicroChem | 950K PMMA A4 | |
Hexamethyldisilazane (HMDS) | Shin-Etsu MicroSI | MicroPrime HP Primer | |
Optical Photoresist | Dow Chemical | Megaposit SPR 220-3.0 | |
Photoresist Developer | AZ Electronic Materials | AZ 300 MIF Developer | |
Methyl Iso-Butyl Keytone (MIBK) | Avantor Performance Materials | 9322-03 | |
Equipment | |||
Ti:Sapphire Mode-Locked Laser | Coherent | MIRA 900D V10 XW OPT 110V | |
Pyroelectric Detector | Spectrum Detector | SPI-A-65 THz | |
Electron-Beam Lithography Tool | JEOL | JBX-6300-FS | |
Plasma Stripper | Yield Engineering Systems | YES-CV200RFS | |
Metal Evaporator | Denton Vacuum | SJ-20 | |
Plasma Enhanced Chemical Vapor Deposition Tool | GSI | GSI PECVD System | |
Projection Lithography Stepper | GCA | AutoStep 200 | |
Reactive Ion Etcher | LAM Research | 9400 | |
Parameter Analyzer | Hewlett Packard | 4155A | |
Optical Chopper | Thorlabs | MC2000 | |
Lock-in Amplifier | Stanford Research Systems | SR830 | |
Electrooptic Modulator | Thorlabs | EO-AM-NR-C2 | |
Motorized Linear Stage | Thorlabs | NRT100 |