Wir beschreiben Methoden für die Konstruktion, Fertigung und experimentelle Charakterisierung plasmonischen photoleitenden Emitter, die zwei Größenordnungen höher Terahertz-Leistung im Vergleich zu herkömmlichen Strahlern photoleitenden anbieten.
In diesem Video-Artikel präsentieren wir eine detaillierte Demonstration eines hocheffizienten Verfahren zur Erzeugung von Terahertz-Wellen. Unsere Technik basiert auf Photoleitfähigkeit, das einer der am häufigsten verwendeten Techniken zum Terahertzerzeugung 1-8 hat basiert. Terahertzerzeugung in einer photoleitfähigen Emitter durch Pumpen eines ultraschnellen Photoleiter mit einem gepulsten oder überlagerten Laserbestrahlung erzielt. Der induzierte Photostrom, der die Hüllkurve des Pumplasers folgt, auf eine Terahertz-Sendeantenne, die mit den Photoleiter Kontaktelektroden zum Terahertz-Strahlung zu erzeugen geleitet. Obwohl die Quanteneffizienz einer photoleitfähigen Emitter theoretisch 100% erreichen kann, sind die relativ langen Transportweg Längen der foto-erzeugten Träger mit den Kontaktelektroden der herkömmlichen Photoleiter stark ihre Quantenausbeute begrenzt. Zusätzlich kann der Träger-Screening-Effekt und thermischen Abbau strikt zu begrenzen die maximale Leistung power konventioneller photoleitenden Terahertz-Quellen. Um die Quanteneffizienz Beschränkungen herkömmlicher photoleitenden Terahertz-Emitter anzugehen, haben wir ein neues Konzept, das photoleitende Emitter eine plasmonischen Kontakt-Elektroden-Konfiguration auf hohe Quanten-Effizienz und ultraschnellen Betrieb bieten gleichzeitig integriert entwickelt. Durch die Verwendung von Nano-Plasmonen Kontakt-Elektroden, wir deutliche Verkürzung der durchschnittlichen Foto-generated Träger Transportweg Photoleiter Kontakt-Elektroden im Vergleich zu herkömmlichen Photoleiter 9. Unsere Methode ermöglicht es auch zunehmende Photoleiter aktiven Fläche ohne erhebliche Steigerung der kapazitiven Belastung der Antenne, die Förderung der Terahertz-Strahlung maximale Leistung durch die Verhinderung der Träger abschirmende Wirkung und thermischer Zerfall bei hohen optischen Pumpleistung. Durch die Integration von Plasmonen Kontaktelektroden zeigen wir, Verbesserung der optischen Terahertz-to-Wirkungsgrad von einer herkömmlichen lichtleitenden terahertz Emitter um einen Faktor von 50 10.
Wir präsentieren einen neuartigen Terahertz-Emitter photoleitenden die eine plasmonischen Kontakt-Elektroden-Konfiguration verwendet, um die optisch-Terahertz-Wirkungsgrad von zwei Größenordnungen verbessern. Unsere Technik geht die wichtigsten Beschränkungen herkömmlicher photoleitfähigen Terahertz-Sender, nämlich niedriger Ausgangsleistung und schlechter Wirkungsgrad, die aus der inhärenten Kompromiß zwischen hoher Quanteneffizienz und ultraschnellen Betrieb von herkömmlichen Photoleiter stammen.
Eine der wichtigsten Neuerungen in unserem Design, das zu dieser Bockspringen Leistungsverbesserung geführt ist, um einen Kontakt-Elektroden-Konfiguration, die eine große Anzahl von Foto-generierten Ladungsträger in unmittelbarer Nähe zu den Kontakt-Elektroden, sammelt so zu konzipieren, dass sie innerhalb gesammelt werden kann ein Sub- Pikosekunden-Zeitskala. In anderen Worten wird der Kompromiss zwischen Fotoleiter ultraschnelle Bedienung und hohe Quanteneffizienz durch räumliche Manipulation des photo-Gattungen gemildertted Airlines. Plasmonic Kontakt-Elektroden bieten diese einzigartige Fähigkeit von (1) ermöglicht Lichtbegrenzungsschicht in nanoskalige Gerät aktiven Bereiche zwischen den Elektroden plasmonischen (jenseits Beugungsgrenze), (2) Erweiterung außerordentliches Licht an der Metall-Kontakt und Foto-absorbierenden Halbleiter-Grenzfläche 10, 11. Ein weiteres wichtiges Merkmal unserer Lösung ist, dass es große Photoleiter aktiven Bereiche beherbergt ohne erhebliche Steigerung der parasitäre Belastung der Terahertz strahlende Antenne. Mit Hilfe großer Photoleiter aktiven Bereiche ermöglichen Milderung der Träger-Screening-Effekt und thermischen Abbau, die die ultimativen Grenzen für die maximale Strahlungsleistung von herkömmlichen photoleitenden Strahler sind. Dieses Video Artikel basiert auf den einzigartigen Eigenschaften unserer vorgestellte Lösung durch die Beschreibung der über Physik, numerische Modellierung und experimentelle Verifikation konzentriert. Wir experimentell zeigen 50-mal höhere Mächte von einem Terahertz plasmonischen photoconductive Emitter im Vergleich mit einer ähnlichen photoleitfähigen Emitter mit nicht-Plasmonen Kontaktelektroden.
In diesem Video-Artikel präsentieren wir eine neue Generation photoleitenden Terahertz-Technik, die eine plasmonischen Kontakt-Elektroden-Konfiguration verwendet, um die optisch-Terahertz-Wirkungsgrad von zwei Größenordnungen verbessern. Der deutliche Anstieg in der Terahertz-Strahlung Strom aus den vorgestellten plasmonischen photoleitenden Strahler ist sehr wertvoll für zukünftige hochempfindliche Terahertz-Bildgebung, Spektroskopie und Spektrometrie für fortschrittliche chemische Identifizierung verwendet, medi…
The authors have nothing to disclose.
Die Autoren möchten Picometrix für die Bereitstellung der LT-GaAs-Substrat danken und bedanken uns für die finanzielle Unterstützung von Michigan Raum Grants Consortium, DARPA Young Faculty Award von Dr. John Albrecht (contract # N66001-10-1-4027), NSF CAREER verwaltet Auszeichnung verwaltet von Dr. Samir El-Ghazaly (contract # N00014-11-1-0096), ONR Young Investigator Award von Dr. Paul Maki (contract # N00014-12-1-0947) verwaltet, und ARO Young Investigator Award verwaltet von Dr. Dev Palmer (contract # W911NF-12-1-0253).
Reagent | |||
Polymethyl Methacrylate (PMMA) | MicroChem | 950K PMMA A4 | |
Hexamethyldisilazane (HMDS) | Shin-Etsu MicroSI | MicroPrime HP Primer | |
Optical Photoresist | Dow Chemical | Megaposit SPR 220-3.0 | |
Photoresist Developer | AZ Electronic Materials | AZ 300 MIF Developer | |
Methyl Iso-Butyl Keytone (MIBK) | Avantor Performance Materials | 9322-03 | |
Equipment | |||
Ti:Sapphire Mode-Locked Laser | Coherent | MIRA 900D V10 XW OPT 110V | |
Pyroelectric Detector | Spectrum Detector | SPI-A-65 THz | |
Electron-Beam Lithography Tool | JEOL | JBX-6300-FS | |
Plasma Stripper | Yield Engineering Systems | YES-CV200RFS | |
Metal Evaporator | Denton Vacuum | SJ-20 | |
Plasma Enhanced Chemical Vapor Deposition Tool | GSI | GSI PECVD System | |
Projection Lithography Stepper | GCA | AutoStep 200 | |
Reactive Ion Etcher | LAM Research | 9400 | |
Parameter Analyzer | Hewlett Packard | 4155A | |
Optical Chopper | Thorlabs | MC2000 | |
Lock-in Amplifier | Stanford Research Systems | SR830 | |
Electrooptic Modulator | Thorlabs | EO-AM-NR-C2 | |
Motorized Linear Stage | Thorlabs | NRT100 |