Proteínas de ligação de gelo (IBPS), também conhecidas como proteínas anticongelantes, inibir o crescimento do gelo e são um aditivo promissor para uso na criopreservação de tecidos. A principal ferramenta utilizada para investigar IBPS é o osmómetro nanolitro. Nós desenvolvemos uma casa projetada fase de arrefecimento montado em um microscópio óptico e controlados usando uma custom-built rotina LabVIEW. O osmómetro nanolitro descrito aqui manipulado a temperatura da amostra de forma ultra-sensíveis.
Ice-binding proteins (IBPs), including antifreeze proteins, ice structuring proteins, thermal hysteresis proteins, and ice recrystallization inhibition proteins, are found in cold-adapted organisms and protect them from freeze injuries by interacting with ice crystals. IBPs are found in a variety of organism, including fish1, plants2, 3, arthropods4, 5, fungi6, and bacteria7. IBPs adsorb to the surfaces of ice crystals and prevent water molecules from joining the ice lattice at the IBP adsorption location. Ice that grows on the crystal surface between the adsorbed IBPs develops a high curvature that lowers the temperature at which the ice crystals grow, a phenomenon referred to as the Gibbs-Thomson effect. This depression creates a gap (thermal hysteresis, TH) between the melting point and the nonequilibrium freezing point, within which ice growth is arrested8-10, see Figure 1. One of the main tools used in IBP research is the nanoliter osmometer, which facilitates measurements of the TH activities of IBP solutions. Nanoliter osmometers, such as the Clifton instrument (Clifton Technical Physics, Hartford, NY,) and Otago instrument (Otago Osmometers, Dunedin, New Zealand), were designed to measure the osmolarity of a solution by measuring the melting point depression of droplets with nanoliter volumes. These devices were used to measure the osmolarities of biological samples, such as tears11, and were found to be useful in IBP research. Manual control over these nanoliter osmometers limited the experimental possibilities. Temperature rate changes could not be controlled reliably, the temperature range of the Clifton instrument was limited to 4,000 mOsmol (about -7.5 °C), and temperature recordings as a function of time were not an available option for these instruments.
We designed a custom-made computer-controlled nanoliter osmometer system using a LabVIEW platform (National Instruments). The cold stage, described previously9, 10, contains a metal block through which water circulates, thereby functioning as a heat sink, see Figure 2. Attached to this block are thermoelectric coolers that may be driven using a commercial temperature controller that can be controlled via LabVIEW modules, see Figure 3. Further details are provided below. The major advantage of this system is its sensitive temperature control, see Figure 4. Automated temperature control permits the coordination of a fixed temperature ramp with a video microscopy output containing additional experimental details.
To study the time dependence of the TH activity, we tested a 58 kDa hyperactive IBP from the Antarctic bacterium Marinomonas primoryensis (MpIBP)12. This protein was tagged with enhanced green fluorescence proteins (eGFP) in a construct developed by Peter Davies’ group (Queens University)10. We showed that the temperature change profile affected the TH activity. Excellent control over the temperature profile in these experiments significantly improved the TH measurements. The nanoliter osmometer additionally allowed us to test the recrystallization inhibition of IBPs5, 13. In general, recrystallization is a phenomenon in which large crystals grow larger at the expense of small crystals. IBPs efficiently inhibit recrystallization, even at low concentrations14, 15. We used our LabVIEW-controlled osmometer to quantitatively follow the recrystallization of ice and to enforce a constant ice fraction using simultaneous real-time video analysis of the images and temperature feedback from the sample chamber13. The real-time calculations offer additional control options during an experimental procedure. A stage for an inverted microscope was developed to accommodate temperature-controlled microfluidic devices, which will be described elsewhere16.
The Cold Stage System
The cold stage assembly (Figure 2) consists of a set of thermoelectric coolers that cool a copper plate. Heat is removed from the stage by flowing cold water through a closed compartment under the thermoelectric coolers. A 4 mm diameter hole in the middle of the copper plate serves as a viewing window. A 1 mm diameter in-plane hole was drilled to fit the thermistor. A custom-made copper disc (7 mm in diameter) with several holes (500 μm in diameter) was placed on the copper plate and aligned with the viewing window. Air was pumped at a flow rate of 35 ml/sec and dried using Drierite (W.A. Hammond). The dry air was used to ensure a dry environment at the cooling stage. The stage was connected via a 9 pin connection outlet to a temperature controller (Model 3040 or 3150, Newport Corporation, Irvine, California, US). The temperature controller was connected via a cable to a computer GPIB-PCI card (National instruments, Austin, Texas, USA).
Este trabalho demonstra o funcionamento de um osmómetro nanolitro, controlado por computador, que permite medições precisas da actividade TH com controlo de temperatura excepcional. Em qualquer sistema sensível à temperatura, gradientes de temperatura indesejáveis devem ser evitadas. Para evitar gradientes de temperatura no aparelho aqui apresentado, a gota de solução de teste deve ser posicionada no centro de um furo na fase de arrefecimento de cobre do disco (passo 2.7). Além disso, o cristal único deve estar no centro da gota em vez de junto das extremidades (na maioria dos casos, isto irá acontecer espontaneamente). A dependência do tempo descrito indica que a taxa de arrefecimento pode influenciar as leituras TH. Assim, sugere-se que inclua um relatório de tempo durante o qual o cristal foi exposta à solução antes do arrefecimento, assim como a velocidade de arrefecimento. Nós normalmente esperado 10 min antes da rampa para baixo a temperatura de 0.01 ° C passos cada sec 4.
Os co LabVIEW controladosfase oling foi adaptado para utilização com um microscópio invertido no qual os dispositivos microfluidicos podem ser termicamente manipulado. Este sistema facilita a realização de experimentos solução de intercâmbio de cristais de gelo e IBPS marcados com eGFP 9, 10, 16. O sistema LabVIEW-controlada pode ser adaptado a uma fase Clifton, ligando o controlador de temperatura de 3040 através de um circuito de adaptação designada eléctrico. Tal sistema é operado no laboratório Davies 17. O software LabVIEW ea designada projeto de circuito elétrico adaptação para o palco Clifton estão disponíveis mediante solicitação.
Em conclusão, nós descrevemos um osmómetro nanolitro, que facilita o controlo sensível e manipulação de temperatura e a taxa de aumento de temperatura e diminuição (0,002 com sensibilidade ° C), coordenado com uma interface de vídeo através de uma rotina de LabVIEW para análise em tempo real. Este sistema pode realizar reprodutíveis taxa controlada experiências que são important para investigar a cinética de interações IBP com gelo. Tais experiências podem resolver vários longo debatidas questões que envolvem o mecanismo de ação do IBPS.
The authors have nothing to disclose.
Esta pesquisa foi apoiada pela ISF, NSF, e ERC. Nós gostaríamos de agradecer a ajuda técnica com a fase de temperatura de Randy Milford, Michael Koren, Shafer Doug, e Dennison Jeremy. Assistência ao desenvolvimento de software foi fornecido pela Ou Chen, Xu Di, Sannareddy Rajesh, e Bhattachary Sumit. Gostaríamos de agradecer aos nossos colaboradores o professor Peter L. Davies e Dr. Laurie A. Graham para a proteína IBP MP e discussões úteis. Agradecemos também laboratório membros Dr. Maya Bar-Dolev, Yangzhong Qin, Dr. Yeliz Celik, Dr. Natalya Pertaya, Ortal Mizrahy, e Guy Shlomit para seu feedback do usuário.
Name | Company | Catalog Number/model | Comments |
Immersion oil Type B | Cargille Laboratories | 16484 | |
Drierite | W.A. Hammond Drierite | 043063 2270g | |
Micro 90 cleaning solution | Cole-Parmer | EW-18100-11 | |
Capillary puller | Narishige | PB-7 | |
Glass capillary tubes | Brand GNBH | 7493 21 | 75 mm long, 1.15 diameter |
Temperature controller | Newport, Irvine, California, United States | Model 3040 | Model 3040 |
Light microscope | Olympus | Model BH2 | |
10x objective | Olympus | S Plan 10, 0.3, 160/0.17 | |
50x objective | Nikon | CF plan, 50X/0.55 EPI ELWD | |
CCD Camera | Provideo | CVC-140 | |
Tygon tubes | Saint-Gobain, Paris, France | Tygon Formulation S-50-HL Tubing | |
Glass syringe (2 ml) | Poulten-Graf, Wertheim, Germany | 7 10227 | |
GPIB-PCI card | National instruments, Austin, Texas, USA | 778032-01 | |
Video frame grabber IMAQ-PCI-1407 | National instruments, Austin, Texas, USA | 322156B-01 | |
LabVIEW System Design Software | National instruments, Austin, Texas, USA | Version 8 | |
DiVx Author software | DiVx LLC, San Diego, CA, USA |