Proteine leganti ghiaccio (IBPs), noto anche come proteine antigelo, inibiscono la crescita di ghiaccio e sono un additivo promettente per l'uso nella crioconservazione dei tessuti. Lo strumento principale utilizzato per indagare IBPs è il osmometro nanolitri. Abbiamo sviluppato una casa progettata fase di raffreddamento montato su un microscopio ottico e controllato utilizzando un custom-built routine di LabVIEW. Il osmometro nanolitri qui descritto manipolato la temperatura del campione in un ultra-minuscole.
Ice-binding proteins (IBPs), including antifreeze proteins, ice structuring proteins, thermal hysteresis proteins, and ice recrystallization inhibition proteins, are found in cold-adapted organisms and protect them from freeze injuries by interacting with ice crystals. IBPs are found in a variety of organism, including fish1, plants2, 3, arthropods4, 5, fungi6, and bacteria7. IBPs adsorb to the surfaces of ice crystals and prevent water molecules from joining the ice lattice at the IBP adsorption location. Ice that grows on the crystal surface between the adsorbed IBPs develops a high curvature that lowers the temperature at which the ice crystals grow, a phenomenon referred to as the Gibbs-Thomson effect. This depression creates a gap (thermal hysteresis, TH) between the melting point and the nonequilibrium freezing point, within which ice growth is arrested8-10, see Figure 1. One of the main tools used in IBP research is the nanoliter osmometer, which facilitates measurements of the TH activities of IBP solutions. Nanoliter osmometers, such as the Clifton instrument (Clifton Technical Physics, Hartford, NY,) and Otago instrument (Otago Osmometers, Dunedin, New Zealand), were designed to measure the osmolarity of a solution by measuring the melting point depression of droplets with nanoliter volumes. These devices were used to measure the osmolarities of biological samples, such as tears11, and were found to be useful in IBP research. Manual control over these nanoliter osmometers limited the experimental possibilities. Temperature rate changes could not be controlled reliably, the temperature range of the Clifton instrument was limited to 4,000 mOsmol (about -7.5 °C), and temperature recordings as a function of time were not an available option for these instruments.
We designed a custom-made computer-controlled nanoliter osmometer system using a LabVIEW platform (National Instruments). The cold stage, described previously9, 10, contains a metal block through which water circulates, thereby functioning as a heat sink, see Figure 2. Attached to this block are thermoelectric coolers that may be driven using a commercial temperature controller that can be controlled via LabVIEW modules, see Figure 3. Further details are provided below. The major advantage of this system is its sensitive temperature control, see Figure 4. Automated temperature control permits the coordination of a fixed temperature ramp with a video microscopy output containing additional experimental details.
To study the time dependence of the TH activity, we tested a 58 kDa hyperactive IBP from the Antarctic bacterium Marinomonas primoryensis (MpIBP)12. This protein was tagged with enhanced green fluorescence proteins (eGFP) in a construct developed by Peter Davies’ group (Queens University)10. We showed that the temperature change profile affected the TH activity. Excellent control over the temperature profile in these experiments significantly improved the TH measurements. The nanoliter osmometer additionally allowed us to test the recrystallization inhibition of IBPs5, 13. In general, recrystallization is a phenomenon in which large crystals grow larger at the expense of small crystals. IBPs efficiently inhibit recrystallization, even at low concentrations14, 15. We used our LabVIEW-controlled osmometer to quantitatively follow the recrystallization of ice and to enforce a constant ice fraction using simultaneous real-time video analysis of the images and temperature feedback from the sample chamber13. The real-time calculations offer additional control options during an experimental procedure. A stage for an inverted microscope was developed to accommodate temperature-controlled microfluidic devices, which will be described elsewhere16.
The Cold Stage System
The cold stage assembly (Figure 2) consists of a set of thermoelectric coolers that cool a copper plate. Heat is removed from the stage by flowing cold water through a closed compartment under the thermoelectric coolers. A 4 mm diameter hole in the middle of the copper plate serves as a viewing window. A 1 mm diameter in-plane hole was drilled to fit the thermistor. A custom-made copper disc (7 mm in diameter) with several holes (500 μm in diameter) was placed on the copper plate and aligned with the viewing window. Air was pumped at a flow rate of 35 ml/sec and dried using Drierite (W.A. Hammond). The dry air was used to ensure a dry environment at the cooling stage. The stage was connected via a 9 pin connection outlet to a temperature controller (Model 3040 or 3150, Newport Corporation, Irvine, California, US). The temperature controller was connected via a cable to a computer GPIB-PCI card (National instruments, Austin, Texas, USA).
Questo lavoro illustra il funzionamento di un computer controllato osmometro nanolitri che permette misure accurate di attività TH con controllo della temperatura straordinario. In qualsiasi sistema sensibile alla temperatura, gradienti di temperatura desiderati devono essere evitati. Per evitare gradienti di temperatura nell'apparato qui presentato, la gocciolina di soluzione campione deve essere posizionato al centro di un foro nella fase di raffreddamento in rame disco (punto 2.7). Inoltre, il singolo cristallo dovrebbe essere al centro della goccia piuttosto che vicino ai bordi (nella maggior parte dei casi, ciò avverrà spontaneamente). La dipendenza dal tempo descritto indica che la velocità di raffreddamento può influenzare le letture TH. Pertanto, si suggerisce una relazione tra il tempo durante il quale il cristallo è stato esposto alla soluzione prima di raffreddamento, così come la velocità di raffreddamento. Abbiamo tipicamente aspettato 10 min prima rampa di discesa della temperatura a 0,01 ° C passaggi ogni 4 sec.
I LabVIEW controllati cofase oling stato adattato per l'uso con un microscopio invertito su cui dispositivi microfluidici potrebbe essere termicamente manipolato. Tale sistema facilita l'esecuzione di esperimenti di cambio soluzione con cristalli di ghiaccio e IBPs con etichetta eGFP 9, 10, 16. Il LabVIEW sistema controllato può essere adattata ad una fase Clifton collegando il regolatore di temperatura 3040 tramite un circuito di adattamento designato elettrico. Tale sistema viene utilizzato in laboratorio Davies 17. Il software LabVIEW e il designato disegno adegua circuito elettrico per la fase di Clifton sono disponibili su richiesta.
In conclusione, si descrive un osmometro nanolitri che facilita il controllo sensibile e la manipolazione della temperatura e il tasso di aumento e diminuzione della temperatura (con 0,002 ° C sensibilità), coordinati con un'interfaccia video attraverso una routine LabVIEW per analisi in tempo reale. Questo sistema può eseguire riproducibili tasso di esperimenti controllati che sono important per lo studio della cinetica delle interazioni IBP con ghiaccio. Tali esperimenti possono affrontare diverse a lungo dibattute questioni riguardanti il meccanismo d'azione di IBPs.
The authors have nothing to disclose.
Questa ricerca è stata sostenuta dalla ISF, NSF, e ERC. Vorremmo riconoscere aiuto tecnico con la fase di temperatura da Randy Milford, Michael Koren, Doug Shafer, e Jeremy Dennison. Assistenza allo sviluppo del software è stato fornito da o Chen, Di Xu, Rajesh Sannareddy e Sumit Bhattachary. Vorremmo ringraziare i nostri collaboratori il Prof. Peter L. Davies e il dottor Laurie A. Graham per la proteina Mp IBP e utili discussioni. Ringraziamo anche i membri del laboratorio Dr. Maya Bar-Dolev, Yangzhong Qin, il dottor Yeliz Celik, il dottor Natalya Pertaya, Ortal Mizrahy, e Guy Shlomit per il loro feedback degli utenti.
Name | Company | Catalog Number/model | Comments |
Immersion oil Type B | Cargille Laboratories | 16484 | |
Drierite | W.A. Hammond Drierite | 043063 2270g | |
Micro 90 cleaning solution | Cole-Parmer | EW-18100-11 | |
Capillary puller | Narishige | PB-7 | |
Glass capillary tubes | Brand GNBH | 7493 21 | 75 mm long, 1.15 diameter |
Temperature controller | Newport, Irvine, California, United States | Model 3040 | Model 3040 |
Light microscope | Olympus | Model BH2 | |
10x objective | Olympus | S Plan 10, 0.3, 160/0.17 | |
50x objective | Nikon | CF plan, 50X/0.55 EPI ELWD | |
CCD Camera | Provideo | CVC-140 | |
Tygon tubes | Saint-Gobain, Paris, France | Tygon Formulation S-50-HL Tubing | |
Glass syringe (2 ml) | Poulten-Graf, Wertheim, Germany | 7 10227 | |
GPIB-PCI card | National instruments, Austin, Texas, USA | 778032-01 | |
Video frame grabber IMAQ-PCI-1407 | National instruments, Austin, Texas, USA | 322156B-01 | |
LabVIEW System Design Software | National instruments, Austin, Texas, USA | Version 8 | |
DiVx Author software | DiVx LLC, San Diego, CA, USA |