Summary

用高压液相色谱法提取和分析儿茶酚胺神经递质及其代谢物的简便方法

Published: March 01, 2018
doi:

Summary

我们提出了一种方便的固相萃取与高压液相色谱 (HPLC) 结合电化学检测 (幼儿发展) 同时测定三单胺类神经递质和两个代谢物在婴儿的尿液中。我们还确定代谢物 MHPG 作为早期诊断婴儿脑损伤的潜在生物标志物。

Abstract

生物液中儿茶酚胺类神经递质的提取和分析对评价神经系统功能和相关疾病具有重要意义, 但其精确测量仍然是一个挑战。许多协议已被描述为神经递质测量的各种仪器, 包括高压液相色谱 (HPLC)。然而, 存在着复杂的操作或难以检测的多目标的缺陷, 但目前仍存在着以高效液相色谱和敏感电化学或荧光检测为主导的分析技术, 由于灵敏度高, 选择性好。本文介绍了用静电纺丝复合纳米纤维组成的高压力液相色谱法在婴幼儿真实尿样中对儿茶酚胺的预处理和检测的详细协议。以聚苯乙烯为吸附剂的高分子冠醚, 也称为填料-纤维固相萃取 (PFSPE) 法。我们展示了如何容易 precleaned 尿样的碳纤维包装固体相柱, 以及如何在样品中的分析物可以迅速丰富, 吸, 并发现在一个幼儿系统。PFSPE 大大简化了生物样品的预处理程序, 从而减少了时间、费用和减少目标损失。

总的来说, 这项工作说明了一个简单和方便的协议, 固相萃取耦合的 HPLC-幼儿系统, 同时测定三单胺类神经递质 (NE), 肾上腺素 (E), 多巴胺 (DA)) 和两个其代谢产物 (3-甲氧基 4 hydroxyphenylglycol (MHPG) 和 34-二羟基苯乙酸 (DOPAC)) 在婴幼儿尿液中。建立的协议用于评估高危婴儿与围产期脑损伤和健康控制之间的尿儿茶酚胺及其代谢物的差异。比较分析发现两组尿 MHPG 有显著差异, 表明儿茶酚胺代谢物可能是早期诊断婴幼儿脑损伤危险病例的重要候选指标。

Introduction

儿茶酚胺类神经递质及其代谢物在体液中的含量可以影响神经功能, 并在很大程度上影响反应刺激状态的平衡1。异常可能导致多种疾病, 如 pheochromacytoma、肾上腺、神经母细胞瘤和神经系统疾病1,2。体液中儿茶酚胺的提取和测定对相关疾病的诊断有重要意义。然而, 生物样品中的儿茶酚胺存在于低浓度, 易于氧化。此外, 由于介质3中的大量干扰, 它们很难洗脱。因此, 同时检测生物液中的儿茶酚胺仍然是一个挑战。

有评论表明, 尿儿茶酚胺可以是一种压力的量度, 他们的水平是重要的生物标记反应的触觉刺激处理新生儿5。根据这项研究, 所有患有过早事件的婴儿都有患脑损伤的风险4,5,6, 伤害可能导致儿茶酚胺的异常释放和相关物质进入体液。在早期的阶段7,8中, 存在能够检测大脑损伤的先进磁共振技术。然而, 在前48小时内, 异常神经发育过程将导致永久性脑损伤, 这在医学图像11中是不明显的。此外, 高昂的成本和稀缺的仪器资源, 连同其他因素, 使得所有新生单位都无法获得这些专门的神经成像技术。然而, 使用易于接近和实用的生物标志物 (如儿茶酚胺及其代谢物) 可以克服这些缺点, 并筛选人体体液中的生物标记可能有助于早期诊断脑损伤, 并导致提示新生儿需要神经保护的识别9。尿中的儿茶酚胺可以是一个容易和明显的指标, 因为它的数量之间的直接关系释放到液体和 neuroactivity 功能。

在生物体液中, 脑脊液 (CSF) 和血浆样本不易通过现有的创伤程序, 而且由于粘附蛋白和其他杂质也很难消除干扰, 导致了麻烦和耗时的取样过程不适合重复检测。此外, 对于儿童来说, 很难以创伤的方式获取样本。因此, 尿液取样优于其他形式的取样, 因为它是无创、易操作的, 可以反复进行。尿样丰富, 易于贮存, 比其他生物样品具有更大的优越性。

定量测定生物液中儿茶酚胺的主要方法包括 radioenzymic 化验10、酶联免疫吸附剂化验11、伏安12和热透镜光谱分析13。但存在着复杂的操作和难以检测的多目标等缺点。目前, 主要的分析技术是高效液相色谱 (HPLC)14, 加上敏感的电化学15或荧光检测16, 因为其灵敏度高, 选择性好。采用串联质谱技术, 如液相色谱/质谱 (lc/ms) 和液相色谱/质谱/质谱 (lc/ms), 分析和定量的神经递质可以达到高准确性和特异性17,18。然而, MS 技术需要昂贵的仪器和大量的合格的人力, 使这一方法难以普遍适用于大多数传统实验室。高效液相色谱-幼儿早期系统在大多数常规和临床实验室中都有广泛的应用, 因此成为研究小组用于化学测定的一个普遍而又好的选择, 但它们要求将样品引入系统中进行清洁和微型卷19。因此, 在分析之前, 对样品进行提纯和浓缩是非常重要的。纯化步骤的经典方法是液-液萃取14,15,20和离线固相萃取, 包括活化氧化铝柱21,22和 diphenylborate (DPBA) 络合23,24,25,26

Myeongho 李。已使用以冠醚化学修饰的高分子树脂作为吸附剂, 自 2007年27以来选择性地从人尿中提取儿茶酚胺。此外, 在 2006年, 海博他et al。演示了一种简便的合成方法, boronate 亲和萃取吸附剂利用 functionalizable 纳米磁性面体寡聚 silsesquioxane (POSS) 的合成, 并将其应用于富集的儿茶酚胺人尿 (去甲肾上腺素, 肾上腺素和肾上腺素)28。他们也利用纳米材料来完成这项工作, 使用一种叫做纳米静电纺丝技术, 在纳米尺度上形成聚合物纤维材料。静电纺丝工艺可以通过控制工作电压和改变纺丝溶液的含量以及其他参数29来调整产品的直径、形貌和空间对准。与传统的 SPE 碳粉相比, 静电纺丝纳米纤维非常适合从复杂基质中提取和丰富目标分析物, 因为它们具有较高的表面积-体积比, 能有效吸附高效的分析分析,展示更易于控制的表面化学性质, 允许方便地附着的目标化合物。这些特性使它们成为 SPE 吸附剂的好选择, 大大减少了固相和解吸溶剂量30,31,32,33。对于尿样中的儿茶酚胺, 采用 apolymeric 冠醚与聚苯乙烯 (四氯乙烯-PS) 组成的静电纺丝纳米纤维, 选择性提取三儿茶酚胺 (NE, E, DA) 34.研究表明, 选择性冠醚吸附了 NE、E、DA 等靶点, 其基础是通过形成氢键来结合儿茶酚胺的正确几何。该结果有效地显示了材料冠醚, 去除了生物样品中含有的其它干扰化合物。通过本报告的启发, 提出了一种新的方法, 用于选择性提取儿茶酚胺的静电纺丝复合纳米纤维组成的四氯乙烯-PS。

本文对以前的34方法进行了改进和应用, 不仅成功地分析了 E、NE 和 DA, 而且在尿液中还有其代谢物、MHPG 和 DOPAC。我们还探讨了吸附过程机理的新可能性。该方法对五种分析物的提取效率和选择性有满意的效果, 并对围产期脑损伤和健康控制的高危儿尿液的检测进行了验证。

Protocol

获得了父母的知情同意, 并获得了机构审查委员会的批准。这项研究是按照世界医学协会 (赫尔辛基宣言) 的道德准则进行的, 涉及人类的实验。所有参与者的照顾者都提供了书面同意, 让他们参加这项研究。还获得了东南大学附属中大医院的伦理委员会批准。 1. 为提取和测定儿茶酚胺所需的柱和溶液的制备 准备 PFSPE 列。将1-2 毫克的四氯乙烯-PS 纳米纤维分成5-6 整除数,…

Representative Results

该协议是一种简便、方便的 PFSPE 方法, 预处理尿样, 通过高效液相色谱-幼儿系统丰富五儿茶酚胺进行检测;进程的图表显示在图 1中。该协议主要包括四步激活, 加载, 冲洗和洗脱-结合少量的四氯乙烯-PS 纳米纤维和一个简单的固相萃取装置。用表面和孔隙度分析仪对四氯乙烯-PS 纳米纤维的形貌进行了评估 (见材料表)。纹理属性-赌注 (布鲁?…

Discussion

本文提出的 PFSPE 方法在快速、简便、方便等方面具有重要意义。该协议中所用的吸附剂是静电纺丝纳米纤维, 具有较高的表面面积到体积比, 并吸附的方法, 高效。该程序只需要几毫克的碳纤维和少量的淋洗剂组成溶剂, 不需要蒸发步骤集中的分析。在这里, 我们详细介绍了一种基于 HPLC-幼儿发展的协议, 这将允许新用户建立有效的方法来检测和量化三儿茶酚胺及其两个代谢产物 (NE, E, DA 和 MHPG, DOPAC…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究得到了中国国家科学基金会 (81172720, 81673230 号) 的支持, 江苏省科技部社会发展研究项目 (no。BE2016741), 中国质量监督检验检疫总局科学 & 技术项目 (2015QK055), 教育部儿童发展与学习科学重点实验室开放项目方案,东南大学 (CDLS-2016-04)。我们真诚地感谢元宋和萍柳协助我们收集样品。

Materials

200 µL pipette tip column to contain nanofibers
PCE-PS nanofibers material for PFSPE extraction
steel rod (about 0.5 mm diameter) fill the nanofibres into the column
gastight plastic syringe (5 ml) compress solution into the end of the tip
methanol Sinopharm Chemical ReagentCo., Ltd 67-56-1
diphenylborinic acid 2-aminoethyl ester(DPBA) Sigma-Aldrich.Inc A-106408 complex reagent
norepinephrine(NE) Sigma-Aldrich.Inc A-9512 analyte
3-Methoxy-4-hydroxyphenylglycol(MHPG) Sigma-Aldrich.Inc H1377 analyte
epinephrine(E) Sigma-Aldrich.Inc 100154-200503 analyte
3, 4-Dihydroxyphenylacetic acid(DOPAC) Sigma-Aldrich.Inc D-9128 analyte
dopamine(DA) Sigma-Aldrich.Inc H-8502 analyte
3, 4-dihydroxybenzylamine hydrobromide(DHBA) Sigma-Aldrich.Inc 858781 interior label
acetonitrile Sigma-Aldrich.Inc 75-05-8 eluriant and mobile phase
phosphoric acid Sinopharm Chemical ReagentCo., Ltd 7664-38-2 eluriant
uric acid Sinopharm Chemical ReagentCo., Ltd 69-93-2 artifical urine
creatinine Sinopharm Chemical ReagentCo., Ltd 60-27-5 artifical urine
trisodium citrate Sinopharm Chemical ReagentCo., Ltd 6132-04-3 artifical urine
KCl Sinopharm Chemical ReagentCo., Ltd 7447-40-7 artifical urine
NH4Cl Sinopharm Chemical ReagentCo., Ltd 12125-02-9 artifical urine
NaHCO3 Sinopharm Chemical ReagentCo., Ltd SWC0140326 artifical urine
C2Na2O4 Sinopharm Chemical ReagentCo., Ltd 62-76-0 artifical urine
NaSO4 Sinopharm Chemical ReagentCo., Ltd 7757-82-6 artifical urine
disodium hydrogen phosphate Sinopharm Chemical ReagentCo., Ltd 10039-32-4 artifical urine
urea Sinopharm Chemical ReagentCo., Ltd 57-13-6 artifical urine
NaCl Sinopharm Chemical ReagentCo., Ltd 7647-14-5 artifical urine
MgSO4.7H2O Sinopharm Chemical ReagentCo., Ltd 10034-99-8 artifical urine
CaCl2 Sinopharm Chemical ReagentCo., Ltd 10035-04-8 artifical urine
HCl Sinopharm Chemical ReagentCo., Ltd 7647-01-0 artifical urine
citric acid Sinopharm Chemical ReagentCo., Ltd 77-92-9 artifical urine and mobile phase
EDTA disodium salt Sinopharm Chemical ReagentCo., Ltd 34124-14-6 mobile phase
monometallic sodium orthophosphate Sinopharm Chemical ReagentCo., Ltd 7558-80-7 artifical urine and mobile phase
1-heptanesulfonic acid sodium salt Sinopharm Chemical ReagentCo., Ltd 22767-50-6 mobile phase
sodium hydroxide Sinopharm Chemical ReagentCo., Ltd 1310-73-2 mobile phase
phenylboronic acid column(PBA column) Aglilent 12102018 PBA extraction
Inertsil® ODS-3 5 µm 4.6×150 mm column Dikma 5020-06731 HPLC column for seperation
SHIMADZU SIL-20AC prominence AUTO SAMPLER Shimadzu Corporation, Japan SIL-20AC auto injection for eluriant
SHIMADZU LC-20AD High Performance Liquid Chromatography Shimadzu Corporation, Japan LC-20AD HPLC pump
SHIMADZU L-ECD-60A electrochemical detector Shimadzu Corporation, Japan L-ECD-60A detector for the analytes
ASAP 2020 Accelerated Surface Area and Porosimetry System Micromeritics, USA surface and porosity analyzer 

Referências

  1. Elhwuegi, A. S. Central monoamines and their role in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 28, 435-451 (2004).
  2. Da, C. F., Ngoabdalla, S., Houzel, J. C., Rehen, S. K. Murine model for Parkinsons disease: From 6-OH dopamine lesion to behavioral test. J. Vis. Exp. (35), e1376 (2010).
  3. Varley, H., Gowenlock, A. H. The clinical chemistry of monoamines. Brit. Med. J. 2, 1330 (1963).
  4. Wang, X., Rousset, C. I., Hagberg, H., Mallard, C. Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin. Fetal. Neonatal. Med. 11, 343-353 (2006).
  5. Inder, T. E., Volpe, J. J. Mechanisms of perinatal brain injury. Semin. Neonatol. 5, 3-16 (2000).
  6. Miller, S. P., Ferriero, D. M. From selective vulnerability to connectivity: Insights from newborn brain imaging. Trends. Neurosci. 32, 496-505 (2009).
  7. Barkovich, A. J., et al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. Am. J. Neuroradiol. 20, 1399-1405 (1999).
  8. Liauw, L., van Wezel-Meijler, G., Veen, S., van Buchem, M. A., van der Grond, J. Do apparent diffusion coefficient measurements predict outcome in children with neonatal hypoxic-ischemic encephalopathy?. Am. J. Neuroradiol. 30, 264-270 (2009).
  9. Varsami, M., et al. Inflammation and oxidative stress biomarkers in neonatal brain hypoxia and prediction of adverse neurological outcome: A review. J. Pediatr. Neonat. Individual. Med. 2, e020203 (2013).
  10. Cooper, R. L., Walker, R. F. Microradioenzymic assays for the measurement of catecholamines and serotonin. Methods. Enzymol. 103, 483-493 (1983).
  11. Murphy, J. F. The development of enzyme linked immunosorbent assays (ELISA) for the catecholamines adrenaline and noradrenaline. J. Immunol. Methods. 154, 89-98 (1992).
  12. Jones, S. R., Mickelson, G. E., Collins, L. B., Kawagoe, K. T., Wightman, R. M. Interference by pH and Ca2+ ions during measurements of catecholamine release in slices of rat amygdala with fast-scan cyclic voltammetry. J. Neurosci. Methods. 52, 1-10 (1994).
  13. Sanchismallols, J. M., Villanuevacamañas, R. M., Ramisramos, G. Determination of unconjugated catecholamine in urine as dopamine by thermal lens spectrometry. Analyst. 117, 1367-1371 (1992).
  14. Lan, C., Liu, W. Determination of catecholamines by HPLC-ECD in urine. Medical Laboratory Science and Clinics. , (2007).
  15. Tsunoda, M., Aoyama, C., Ota, S., Tamura, T., Funatsu, T. Extraction of catecholamines from urine using a monolithic silica disk-packed spin column and high-performance liquid chromatography-electrochemical detection. Anal. Methods. 3, 582-585 (2011).
  16. Bartolini, B., et al. Determination of monoamine oxidase activity by HPLC with fluorimetric detection. Neurobiology (Bp). 7, 109-121 (1999).
  17. Dunand, M., Gubian, D., Stauffer, M., Abid, K., Grouzmann, E. High throughput and sensitive quantitation of plasma catecholamines by ultraperformance liquid chromatography tandem mass spectrometryusing a solid phase microwell extraction plate. Anal. Chem. 85, 3539-3544 (2013).
  18. He, H., Carballo-Jane, E., Tong, X., Cohen, L. H. Measurement of catecholamines in rat and mini-pig plasma and urine by liquid chromatography-tandem mass spectrometry coupled with solid phase extraction. J. Chromatogr. B. 997, 154-161 (2015).
  19. Simon, N., Young, P. How to increase serotonin in the human brain without drugs. J. Psychiatry. Neurosci. 32, 394-399 (2007).
  20. Grossi, G., et al. Improvements in automated analysis of catecholamine and related metabolites in biological samples by column-switching high-performance liquid chromatography. J. Chromatogr. A. 541, 273-284 (1991).
  21. Iwamot, T., Yoshiura, M., Iriyama, K. Liquid chromatographic identification of urinary catecholamine metabolites adsorbed on alumina. J. Liq. Chromatogr. R. T. 10, 1217-1235 (1987).
  22. Maycock, P. F., Frayn, K. N. Use of alumina columns to prepare plasma samples for liquid-chromatographic determination of catecholamines. Clin. Chem. 33, 286-287 (1987).
  23. Grossi, G., Bargossi, A., Lippi, A., Battistoni, R. A fully automated catecholamines analyzer based on cartridge extraction and HPLC separation. Chromatographia. 24, 842-846 (1987).
  24. Rondelli, I., et al. New method for the resolution of the enantiomers of 5,6-dihydroxy-2-methyl-aminotetralin by selective derivatization and HPLC analysis: Application to biological fluids. Chirality. 8, 381-389 (1996).
  25. Kumar, A., Hart, J. P., McCalley, D. V. Determination of catecholamines in urine using hydrophilic interaction chromatography with electrochemical detection. J. Chromatogr. A. 1218, 3854-3861 (2011).
  26. Sabbioni, C., et al. Simultaneous liquid chromatographic analysis of catecholamines and 4-hydroxy-3-methoxyphenylethylene glycol in human plasma: Comparison of amperometric and coulometric detection. J. Chromatogr. A. 1032, 65-71 (2004).
  27. Lee, M., et al. Selective solid-phase extraction of catecholamines by the chemically modified polymeric adsorbents with crown ether. J. Chromatogr. A. 1160, 340-344 (2007).
  28. He, H., et al. Facile synthesis of a boronate affinity sorbent from mesoporous nanomagnetic polyhedral oligomeric silsesquioxanes composite and its application for enrichment of catecholamines in human urine. Anal. Chim. Acta. 944, 1-13 (2016).
  29. Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., Ramkumar, S. S. Electrospinning of nanofibers. J. Appl. Polym. Sci. 96, 557-569 (2005).
  30. Hu, W. Y., et al. Packed-fiber solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry for determination of diethylstilbestrol, hexestrol, and diedestrol residues in milk. J. Chromatogr. B. 957, 7-13 (2014).
  31. Liu, Z., Kang, X., Fang, F. Solid phase extraction with electrospun nanofibers for determination of retinol and α-tocopherol in plasma. Microchim. Acta. 168, 59-64 (2010).
  32. Qi, D., Kang, X., Chen, L., Zhang, Y., Wei, H., Gu, Z. Electrospun polymer nanofibers as a solid-phase extraction sorbent for the determination of trace pollutants in environmental water. Anal. Bioanal. Chem. 390, 929-938 (2008).
  33. Kang, X. J., Chen, L. Q., Zhang, Y. Y., Liu, Y. W., Gu, Z. Z. Performance of electrospun nanofibers for SPE of drugs from aqueous solutions. J. Sep. Sci. 31, 3272-3278 (2008).
  34. Chen, L. Q., Wang, Y., Qu, J. S., Deng, J. J., Kang, X. J. Selective extraction of catecholamines by packed fiber solid-phase using composite nanofibers composing of polymeric crown ether with polystyrene. Biomed. Chromatogr. 29, 103-109 (2015).
  35. Chen, L. Q., Zhu, X. H., Shen, J., Zhang, W. Q. Selective solid-phase extraction of catecholamines from plasma using nanofibers doped with crown ether and their quantitation by HPLC with electrochemical detection. Anal. Bioanal. Chem. 408, 4987-4994 (2016).
  36. Hu, H., Zhang, Y., Zhang, Y., Huang, X., Yuan, D. Preparation of a new sorbent based on boronate affinity monolith and evaluation of its extraction performance for nitrogen-containing pollutants. J. Chromatogr. A. 1342, 8-15 (2014).
  37. Chen, J., et al. Sensitive determination of four camptothecins bysolid-phase microextraction-HPLC based on a boronic acid contained polymer monolithic layer. Anal. Chim. Acta. 879, 41-47 (2015).
  38. Li, D., Chen, Y., Liu, Z. Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem. Soc. Rev. 44, 8097-8123 (2015).
  39. Yan, J., Springsteen, G., Deeter, S., Wang, B. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols: It is not as simple as it appears. Tetrahedron. 60, 11205-11209 (2004).
  40. Reuster, T., Rilke, O., Oehler, J. High correlation between salivary MHPG and CSF MHPG. Psychopharmacology. 162, 415-418 (2002).
  41. Beckmann, H., Goodwin, F. K. Urinary MHPG in subgroups of depressed patients and normal controls. Neuropsychobiology. 6, 91-100 (1980).
  42. Mitoma, M., et al. Stress at work alters serum brain-derived neurotrophic factor (BDNF) levels and plasma 3-methoxy-4-hydroxyphenylglycol (MHPG) levels in healthy volunteers: BDNF and MHPG as possible biological markers of mental stress?. Prog. Neuropsychopharmacol. Biol. Psychiatry. 32, 679-685 (2008).
  43. Ressler, K. J., Nemeroff, C. B. Role of Norepinephrine in the Pathophysiology and Treatment of Mood Disorders. Biol. Psychiatry. 46, 1219-1233 (1999).
  44. Alonso-Spilsbury, M., et al. Perinatal asphyxia pathophysiology in pig and human: A review. Anim. Reprod. Sci. 90, 1-30 (2005).
  45. Shalak, L., Perlman, J. M. Hypoxic-ischemic brain injury in the term infant: Current concepts. Early. Hum. Dev. 80, 125-141 (2004).
  46. Maas, J. W., Leckman, J. F. relationships between central nervous system noradrenergic function and plasma and urinary MHPG and other norepinephrine metabolites. MHPG: Basic Mechanisms and Psychopathology. , 33-43 (1983).
  47. Maas, J. W. Relationships between central nervous system noradrenergic function and plasma and urinary concentrations of norepinephrine metabolites. Adv. Biochem. Psychopharmacol. 39, 45-55 (1984).
  48. Peyrin, L., Pequignot, J. M., Chauplannaz, G., Laurent, B., Aimard, G. Sulfate and glucuronide conjugates of 3-methoxy-4-hydroxyphenylglycol (MHPG) in urine of depressed patients: Central and peripheral influences. J. Neural. Transm. 63, 255-269 (1985).
  49. Peyrin, L. Urinary MHPG sulfate as a marker of central norepinephrine metabolism: A commentary. J. Neural. Transm. 80, 51-65 (1990).

Play Video

Citar este artigo
Xie, L., Chen, L., Gu, P., Wei, L., Kang, X. A Convenient Method for Extraction and Analysis with High-Pressure Liquid Chromatography of Catecholamine Neurotransmitters and Their Metabolites. J. Vis. Exp. (133), e56445, doi:10.3791/56445 (2018).

View Video