Science Education
>

Generation of Organoids from Mouse Extrahepatic Bile Ducts

Instructor Prep
concepts
Student Protocol
JoVE 신문
발생학
JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.  전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
JoVE 신문 발생학
Generation of Organoids from Mouse Extrahepatic Bile Ducts

All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of The University of Michigan.

1. Preparation of Equipment and Materials for Mouse EHBD Isolation

  1. Prepare seeding medium and washing buffer (Table of Materials) in 50 mL conical tubes and keep them at 4 °C or on ice until use.
  2. Set up a surgical table (Figure 1B). Prepare sterilized surgical instruments (Figure 1C).
  3. Place a sterile 24-well plate in the 37 °C tissue culture incubator to pre-warm it.
  4. Place an aliquot of basement matrix on ice. Use basement matrix only when it is completely liquefied.

2. EHBD Isolation and Biliary Organoid Culture

  1. Isolation and preparation of a single cell suspension of mouse EHBD
    1. Euthanize an adult mouse (older than 2 months) according to the institutional guidelines. Place the mouse in a supine position. Open the abdominal cavity using a midline approach and retract the liver to rest on the diaphragm.
    2. Identify the common bile duct located immediately below the liver hilum by gently pulling the proximal duodenum with a hemostat. Separate EHBD from the surrounding tissues using a scalpel blade. Holding the proximal end of the common bile duct with forceps, dissect it distally just above its juncture with the duodenum, then dissect the proximal end of the duct from the liver (Figure 1D). Immediately place isolated EHBD (Figure 1E) into cold washing buffer.
    3. Remove the EHBD from the washing buffer and mince into 0.5 mm sections using a sterile scalpel blade. Place the tissue on a glass plate on ice during the procedure (Figure 1B).
    4. Place the EHBD sections into a tube containing 500 µL of the dissociation buffer. Incubate for 20 min at 37 °C. Neutralize the dissociation buffer by adding 500 µL of ice-cold cell culture medium.
    5. Triturate the cell suspension up and down progressing through 18 G and 20 G needles, 20 times each. Filter the cell suspension through a 70 µm cell strainer and collect the flow-through in a 50 mL tube.
      NOTE: Pre-condition the strainer with 500 µL of sterile phosphate-buffered saline (PBS) prior to filtering to facilitate the passage of the cell suspension.
  2. Establishing EHBD organoids
    1. Centrifuge the flow-through from step 2.1.5 at 300 x g for 5 min at 4 °C.
    2. Carefully remove the supernatant. Resuspend the cells in 1 mL of ice-cold sterile PBS. Transfer the resuspension into a new 1.5 mL tube. Repeat step 2.2.1.
    3. After centrifugation, carefully remove the supernatant from washed cells collected at the tube bottom. Resuspend the cell pellet in 120 µL of liquefied ice-cold basement matrix by pipetting up and down using P200 tips.
      NOTE: Cell pellet resuspension in basement matrix has to be performed on ice-bath.
    4. Plate 40 µL of the cell resuspension in basement matrix into the center of a well in a pre-warmed 24-well plate.
      NOTE: Avoid suctioning air while manipulating basement matrix to prevent bubble formation.
    5. Return the plate with cells resuspended in basement matrix to the 37 °C tissue culture incubator for 15 min or until basement matrix is solidified. Add 600 µL of the seeding medium warmed up to 37 °C to each well (Table of Materials). Return the plate to the 37 °C tissue culture incubator.
    6. Replace the seeding medium with 600 µL of the fresh organoid culture medium in 3 days and every 3 days thereafter. Monitor organoid growth with an inverted microscope. Use organoids for a downstream application or split every 7 to 9 days before accumulation of intraluminal debris and organoid collapse are observed (Figure 2A).

3. EHBD Organoid Passage and Storage

  1. Passage of EHBD organoids 1:3 to 1:4 every 7 to 9 days
    1. Remove the medium from the well and add 400 µL of ice-cold PBS. Resuspend the organoids by gently pipetting the mixture up and down 10 times in the well. Transfer the mixture to a 1.5 mL tube.
    2. Passage the mixture through a 25 G needle 4 times to dissociate the organoids. Centrifuge the mixture at 400 x g for 4 min at 4 °C.
    3. Carefully remove the supernatant and resuspend the cells in basement matrix (1:3 to 1:4) for further culturing (step 2.2.4.) or wash the cells with ice cold PBS for further processing.
      NOTE: Typically, 250-300 cells are plated into the 24-well plate for downstream applications. Plating efficiency can be evaluated by bright field microscopy using an inverted microscope on day 3-5 after passaging by counting the number of organoids and calculating their percent from initial cell number. mRNA can be isolated from EHBDOs washed in PBS using the standard protocol using guanidinium thiocyanate-phenol-chloroform extraction.
  2. Long-term storage of EHBD organoids
    1. Remove the medium from the well and wash the organoids with room temperature PBS. Remove PBS from the well without disturbing the basement matrix drop.
    2. Add 500 µL of ice-cold cell freezing medium to the well. Gently resuspend the organoids in liquefied basement matrix and cell freezing medium and transfer the mixture into cryogenic vials.
    3. Store the vials at -80 °C for 48 h. Transfer the vials to a nitrogen tank for long-term storage in a vapor phase.

4. EHBD Organoid Pprocessing for Paraffin Embedding

  1. Resuspend the EHBDOs in 500 µL of ice-cold PBS (4 °C) by pipetting up and down 5 to 10 times. Collect resuspended EHBDO in liquefied basement matrix in a 1.5 mL tube.
    NOTE: To avoid breaking organoids, cut off the bottom 2-3 mm of a P1000 tip and remove the supernatant very carefully.
  2. Centrifuge EHBD organoids at 350 x g for 5 min. Carefully remove the supernatant without disturbing the organoid pellet.
  3. Add 1 mL of ice-cold 4% paraformaldehyde (PFA) to the organoids and incubate the organoids in 4% PFA overnight at 4°C. Remove 4% PFA from the organoids using a P1000 tip after overnight incubation.
  4. Add 1000 µL of room temperature PBS to the tube with the organoids and incubate for 5 min at room temperature (RT). Centrifuge the tube with organoids in PBS at 350 x g for 5 min. Repeat this process two more times.
  5. Remove PBS and add 1 mL of 30% ethanol to the organoids. Incubate for 5 min at RT.
  6. Centrifuge the tube at 350 x g for 5 min at RT. Remove 30% ethanol. Add 1 mL of 70% ethanol and incubate for 5 min at RT.
  7. Centrifugate at 350 x g for 5 min. Remove 70% ethanol. Add 1 mL of 100% ethanol and incubate for 5 min at RT.
    NOTE: Organoids can be kept in 100% ethanol at room temperature for up to 48 h before further processing.
  8. Heat specimen processing gel in a microwave for 20 s or until liquefied. Add 50 µL of specimen processing gel into the tube with organoids. Place the tube on ice until the specimen processing gel is solidified.
  9. Remove the drop of specimen processing gel with organoids from the tube and place between the blue sponge pads in a cassette for further processing in the tissue processor. Use 15 min for each step in the paraffin embedder during further processing..
  10. Section paraffin-embedded organoids in specimen processing gel at 4 µm. Proceed with immunohistochemical staining as previously described16.

Generation of Organoids from Mouse Extrahepatic Bile Ducts

Learning Objectives

Our protocol describes the generation of mouse EHBD organoids that are tissue-specific and adult stem cell-derived. After the organoids are cultured, a cystic structure formation can be observed as early as 1 day after the EHBD isolation. Contamination with fibroblasts is not typically observed during culture generation. EHBDO plating efficiency is approximately 2% when isolated from either neonatal or adult (older than 2 months) mice (Figure 2B). Plating efficiency of EHBD organoids derived from adult mice increases to 11% in passage 2 and remains stable (Figure 2B). The majority of organoids demonstrate cystic morphology through all passages, with rare "irregular" organoids (Figure 2C-E). Organoids reach a growth peak at 5-7 days after which they start accumulating intraluminal debris and deteriorate (Figure 2A). Therefore, for maintenance of organoid culture, they should be split every 7-10 days (Figure 2A). Once established and when appropriately handled, organoids can be maintained in culture almost indefinitely (cultures were observed up to 14 months). To avoid culture contamination with differentiated cells carried over from initial cell isolation, use organoids passaged at least twice prior to using them for a downstream application. For long-term storage, use earlier passage (up to passage 7) organoids, since they have higher plating efficiency after recovery from storage.

When analyzed with immunofluorescence, EHBDOs consist of a pure population of epithelial cells marked by E-cadherin (Figure 3A-C). Organoid cells demonstrate markers of biliary progenitor cells (Pancreatic and Duodenal Homeobox 1 (PDX1); Figure 3A) as well as markers of biliary differentiation (cytokeratin 19 (CK19) and Sex-Determining Region Y-Box 9 (SOX9); Figure 3B, C). Importantly, a high percentage of organoid cells possess a primary cilium marked by acetylated α-tubulin (a-AT; Figure 3D), which is a feature of normal cholangiocytes, and suggests appropriate organoid cell polarization. The expression of markers of progenitor (Pdx1) and biliary differentiated cells [Ck19, Sox9, Aquaporin 1 (Aqp1), Cystic Fibrosis Transmembrane Conductance Regulator(Cftr)] can be also confirmed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) (Table 1). Combination of these markers is characteristic for cholangiocytes in EHBDs14,17,18.

In summary, this protocol describes the generation of an organoid culture model of polarized biliary epithelial cells expressing progenitor and differentiated markers. This system can be maintained in culture for a prolonged time without changes in morphology, stored long-term, and analyzed with immunohistochemistry and qRT-PCR.

Figure 1
Figure 1: Schematic of the EHBD organoid culture generation and surgical set up. (A). Schematic of EHBD organoid generation. (B). Surgical area was set up for EHBD isolation and included a glass plate (dotted line) kept on an ice tray at all times. (C). Sterile surgical equipment included sharp scissors, straight and curved serrated tweezers, hemostat, and scalpel. (D and E) EHBD is isolated from surrounding connective and pancreatic tissue followed by careful dissection proximally from the intrahepatic bile ducts and liver (D, arrow), and distally from the duodenum (D, arrow). Ruler marks = 1 mm. Please click here to view a larger version of this figure.

Figure 2
Figure 2: EHBDO culture. (A). Microscopic images of EHBDOs over a 12-day course. (B). Plating efficiency of organoids derived from the neonatal (2 mice per culture, n = 3 cultures) and adult (>2 months old, 1 mouse per culture, n = 3 cultures) mice after plating 300 cells per well in 24-well plate and enumerating established organoids on day 5 of culture. (C and D) EHBDO cystic versus irregular morphology was analyzed by microscopy. (E). The percent of cystic and irregular shaped organoids was analyzed in early (<10) and late (≥10) organoid passages. Scale bars = 500 µm. Quantitative data showed as mean +/- standard error of the mean (SEM), t-test. NS = not significant. Please click here to view a larger version of this figure.

Figure 3
Figure 3: EHBDOs express markers of progenitor and mature biliary cells. (A-C). EHBDOs were analyzed by immunofluorescence staining for markers epithelial (A, B. E-cadherin, red), progenitor (A. PDX1, green), and differentiated (B. CK19, green; and C. a-AT, red) biliary cells. Scale bars = 25 µm. *, lumen. (D). EHBDOs were analyzed for abundance of Pdx1, Ck19, Sox9, Aqp1, and Cftr mRNA by qRT-PCR (mean +/- SEM relative to expression of Hprt). Please click here to view a larger version of this figure.

Gene Accession number Primer sequence Product size
Hprt NM_013556 Forward 5’-AACTTGCGCTCATCTTAGGCTTTG-3’ 173 bp
Reverse 5’-AGGACCTCTCGAAGTGTTGGATAC-3’
Pdx1 NM_008814 Forward 5'-GAATTCCTTCTCCAGCTCCA-3' 133 bp
Reverse 5'-GATGAAATCCACCAAAGCTCA-3'
Sox9 NM_011448 Forward 5’-TCCACGAAGGGTCTCTTCTC-3’ 107 bp
Reverse 5’-AGGAAGCTGGCAGACCAGTA-3’
Ck19 NM_008471 Forward 5’-TCTGAAGTCATCTGCAGCCA-3’ 133 bp
Reverse 5’-ACCCTCCCGAGATTACAACC-3’
Aqp1 NM_007472 Forward 5’-CAGTACCAGCTGCAGAGTGC-3’ 112 bp
Reverse 5’-CATCACCTCCTCCCTAGTCG-3’

Table 1: Primers.

List of Materials

L-WRN cell culture medium
Advanced DMEM/F12 Life Technologies 12634-010
Fetal Bovine Serum (FBS) 1% Life Technologies 10437-028
Penicillin-Streptomycin 100 U/mL Life Technologies 15140-122
Washing buffer
Phosphate Buffered Saline (PBS) 50 mL Life Technologies 10010-023
Penicillin-Streptomycin 125 U/mL Life Technologies 15140-122
Amphotericin B  6.25 µg/mL Life Technologies 15290-018
Organoid culture medium
L-WRN Conditioned medium  1:1 ATCC CRL-3276
Advanced DMEM/F12 1:1 Life Technologies 12634-010
Penicillin-Streptomycin 100 U/mL Life Technologies 15140-122
N-Glutamine 10 µl/mL Life Technologies 35050-061
N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid, HEPES 10 mM Life Technologies 15630-080
B27 10 µl/mL Gibco 17504-044
N2 10 µl/mL Gibco 17502-048
Organoid seeding medium
Organoid culture medium 
Epidermal growth factor (EGF) 50 ng/mL Invitrogen PMG8041
Fibroblast growth factor-10 (FGF10) 100 ng/mL PeproTech 100-26
Primary antibodies
Anti-Cytokeratin 19 (CK19) antibody, Rabbit 1:250 Abcam ab53119
Sex-Determining Region Y-Box 9 (SOX9) antibody, Rabbit 1:200 Santa Cruz sc-20095
Pancreatic Duodenal Homeobox 1 (PDX1) antibody, Rabbit 1:2000 DSRB F109-D12
E-cadherin antibody, Goat 1:500 Santa Cruz sc-31020
Acetylated α-tubulin antibody, Mouse 1:500 Sigma-Aldrich T6793
Secondary antibodies
488 labeled anti-rabbit, Donkey IgG 1:1000 Invitrogen A-21206
594 labeled anti-goat, Donkey IgG 1:1000 Invitrogen A-11058
568 labeled anti-mouse, Goat IgG2b 1:500 Invitrogen A-21144
TopFlash Wnt reporter assay
TopFlash HEK293 cell line ATCC CRL-1573
Luciferase Assay Kit Biotium 30003-2
0.05% Trypsin-EDTA Life Technologies 25300054
0.4% Trypan Blue Solution Life Technologies 15250061
Additional materials and reagents
Basement matrix, phenol free Matrigel CORNING 356237
Dissociation buffer, Accutase Gibco A1110501
Cell culture freezing medium, Recovery Life Technologies 12648010
Cell strainer (70 µm, steriled) Fisherbrand 22363548
Guanidinium thiocyanate-phenol RNA extraction, TRIzol Invitrogen 15596026
Specimen processing gel, HistoGel Thermo Fisher Scientific HG-4000-012
Universal mycoplasma detection kit ATCC 30-1012K
1.5 mL microcentrifuge tube Fisherbrand 05-408-129
24 well plate USA Scientific CC7682-7524
50 mL conical centrifuge tube Fisher scientific 14-432-22
Fluorescence microscope Nikon Eclipse E800
Inverted microscope Biotium 30003-2
Necropsy tray Fisherbrand 13-814-61

Lab Prep

Cholangiopathies, which affect extrahepatic bile ducts (EHBDs), include biliary atresia, primary sclerosing cholangitis, and cholangiocarcinoma. They have no effective therapeutic options. Tools to study EHBD are very limited. Our purpose was to develop an organ-specific, versatile, adult stem cell-derived, preclinical cholangiocyte model that can be easily generated from wild type and genetically engineered mice. Thus, we report on the novel technique of developing an EHBD organoid (EHBDO) culture system from adult mouse EHBDs. The model is cost-efficient, able to be readily analyzed, and has multiple downstream applications. Specifically, we describe the methodology of mouse EHBD isolation and single cell dissociation, organoid culture initiation, propagation, and long-term maintenance and storage. This manuscript also describes EHBDO processing for immunohistochemistry, fluorescent microscopy, and mRNA abundance quantitation by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). This protocol has significant advantages in addition to producing EHBD-specific organoids. The use of a conditioned medium from L-WRN cells significantly reduces the cost of this model. The use of mouse EHBDs provides almost unlimited tissue for culture generation, unlike human tissue. Generated mouse EHBDOs contain a pure population of epithelial cells with markers of endodermal progenitor and differentiated biliary cells. Cultured organoids maintain homogenous morphology through multiple passages and can be recovered after a long-term storage period in liquid nitrogen. The model allows for the study of biliary progenitor cell proliferation, can be manipulated pharmacologically, and may be generated from genetically engineered mice. Future studies are needed to optimize culture conditions in order to increase plating efficiency, evaluate functional cell maturity, and direct cell differentiation. Development of co-culture models and a more biologically neutral extracellular matrix are also desirable.

Cholangiopathies, which affect extrahepatic bile ducts (EHBDs), include biliary atresia, primary sclerosing cholangitis, and cholangiocarcinoma. They have no effective therapeutic options. Tools to study EHBD are very limited. Our purpose was to develop an organ-specific, versatile, adult stem cell-derived, preclinical cholangiocyte model that can be easily generated from wild type and genetically engineered mice. Thus, we report on the novel technique of developing an EHBD organoid (EHBDO) culture system from adult mouse EHBDs. The model is cost-efficient, able to be readily analyzed, and has multiple downstream applications. Specifically, we describe the methodology of mouse EHBD isolation and single cell dissociation, organoid culture initiation, propagation, and long-term maintenance and storage. This manuscript also describes EHBDO processing for immunohistochemistry, fluorescent microscopy, and mRNA abundance quantitation by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). This protocol has significant advantages in addition to producing EHBD-specific organoids. The use of a conditioned medium from L-WRN cells significantly reduces the cost of this model. The use of mouse EHBDs provides almost unlimited tissue for culture generation, unlike human tissue. Generated mouse EHBDOs contain a pure population of epithelial cells with markers of endodermal progenitor and differentiated biliary cells. Cultured organoids maintain homogenous morphology through multiple passages and can be recovered after a long-term storage period in liquid nitrogen. The model allows for the study of biliary progenitor cell proliferation, can be manipulated pharmacologically, and may be generated from genetically engineered mice. Future studies are needed to optimize culture conditions in order to increase plating efficiency, evaluate functional cell maturity, and direct cell differentiation. Development of co-culture models and a more biologically neutral extracellular matrix are also desirable.

Procedure

Cholangiopathies, which affect extrahepatic bile ducts (EHBDs), include biliary atresia, primary sclerosing cholangitis, and cholangiocarcinoma. They have no effective therapeutic options. Tools to study EHBD are very limited. Our purpose was to develop an organ-specific, versatile, adult stem cell-derived, preclinical cholangiocyte model that can be easily generated from wild type and genetically engineered mice. Thus, we report on the novel technique of developing an EHBD organoid (EHBDO) culture system from adult mouse EHBDs. The model is cost-efficient, able to be readily analyzed, and has multiple downstream applications. Specifically, we describe the methodology of mouse EHBD isolation and single cell dissociation, organoid culture initiation, propagation, and long-term maintenance and storage. This manuscript also describes EHBDO processing for immunohistochemistry, fluorescent microscopy, and mRNA abundance quantitation by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). This protocol has significant advantages in addition to producing EHBD-specific organoids. The use of a conditioned medium from L-WRN cells significantly reduces the cost of this model. The use of mouse EHBDs provides almost unlimited tissue for culture generation, unlike human tissue. Generated mouse EHBDOs contain a pure population of epithelial cells with markers of endodermal progenitor and differentiated biliary cells. Cultured organoids maintain homogenous morphology through multiple passages and can be recovered after a long-term storage period in liquid nitrogen. The model allows for the study of biliary progenitor cell proliferation, can be manipulated pharmacologically, and may be generated from genetically engineered mice. Future studies are needed to optimize culture conditions in order to increase plating efficiency, evaluate functional cell maturity, and direct cell differentiation. Development of co-culture models and a more biologically neutral extracellular matrix are also desirable.

Tags