Summary

粒状棘球绦虫的短暂转导

Published: September 16, 2022
doi:

Summary

我们使用第三代慢病毒载体描述了粒状 棘球绦虫 不同发育阶段的快速瞬时转导技术。

Abstract

囊性棘球蚴病或包虫病是由 粒状棘球绦虫 引起的最重要的人畜共患寄生虫病之一,棘球绦虫是一种藏耙在犬科动物肠道中的小绦虫。迫切需要应用遗传学研究来了解发病机制和疾病控制和预防。然而,缺乏有效的基因评估系统阻碍了对囊寄生虫(包括 棘球绦虫 属)的功能遗传学的直接解释。本研究证明了慢病毒基因瞬时转导在 颗粒埃马氏菌的元切除和杂化形式中的潜力。从包虫囊肿中分离出原结肠(PSC)并转移到特定的双相培养基中以发育成蠕动的蠕虫。用收获的第三代慢病毒以及HEK293T细胞转染蠕虫作为转导过程对照。在24 h和48 h的蠕动蠕虫中检测到明显的荧光,表明 颗粒埃布氏菌的瞬时慢病毒转导。这项工作首次尝试了绦虫中基于慢病毒的瞬时转导,并展示了对扁虫生物学实验研究具有潜在意义的有希望的结果。

Introduction

囊性棘球蚴病(CE)是由 粒状棘球绦 虫引起的最重要的蠕虫疾病之一,颗粒棘球绦虫是绦虫科12中的一种小型绦虫。已经对 颗粒埃布氏菌 的免疫诊断和疫苗开发进行了广泛的研究。然而,对寄生虫生物学分子基础的了解不足对包虫病的诊断、管理和预防造成了重大限制3456

近年来,由于基因组测序和转录组学方法的发展,几个研究小组789对扁虫进行了广泛的分子研究。然而,在寄生虫世界中,与为某些原生动物10,1112开发的高度可重复的瞬时转导方法相比,寄生扁虫的基因转移技术进展仍然有限。

在过去二十年中,病毒递送系统的使用已成为转基因递送和基因/蛋白质研究的重要工具13.慢病毒感染分裂和非分裂细胞,从而有可能感染有丝分裂后细胞141516。最近的证据表明,在哺乳动物细胞中使用基于慢病毒的转导系统有可能克服以前敲入/敲低技术的大部分局限性。具有适当分子标记(例如GFP表达)的表达慢病毒载体的设计和构建在前面已经描述过16。因此,我们评估 了颗粒埃马氏菌原结肠和蠕动蠕虫中GFP报告基因的慢病毒瞬时转导。

Protocol

本研究由国家医学研究发展研究所和研究伦理审查委员会批准,编号:958680。慢病毒被归类为BSL-2生物;因此,该协议中的所有实验室培养程序均使用无菌实验室实践进行,并根据NIH指南在层流罩下进行。 图1 显示了不同 颗粒芽孢杆菌 阶段的研究方案的示意图。 1. 收集包虫囊肿 从屠宰场经常屠宰的自然感染的绵羊中收集肝脏?…

Representative Results

在这里,我们通过使用第三代慢病毒载体描述了颗粒桔梗的快速有效的瞬时转导技术。我们在双相培养基中培养PSCs以获得蠕动的蠕虫,如前所述25,26。原结肠在体外6周后发育成蠕动的蠕虫。在双相培养基中观察到颗粒杆菌的不同阶段,包括内陷的PSCs(图2A),蒸发的PSCs(图2B)和具有?…

Discussion

了解线虫和梧桐生物学的分子基础对于理解人畜共患寄生虫的致病性至关重要27.缺乏有效的基因评估系统是直接解释茴香寄生虫(包括 棘球绦虫1227)功能性遗传学的主要障碍。本研究证明了慢病毒在 细粒埃布氏菌 瞬时转导中的优异潜力。

慢病毒转导将瞬时转导的简单使用和速度与稳定细胞系?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

本出版物中报道的研究得到了精英研究人员资助委员会的支持,奖励编号为958680,来自伊朗德黑兰国家医学研究发展研究所(NIMAD)。

Materials

12-well culture plates SPL Life Sciences 30012
25 cm2 culture flask SPL Life Sciences 70325
6-well culture plates SPL Life Sciences 30006
Calcium chloride Sigma-Aldrich C4901-500G Working concentration: 2.5 mM
CMRL 1066 medium Thermo Fisher Scientific 11530037
CO2 incubator memmert ICO150
D-(+)-Glucose Sigma-Aldrich G8270-1KG
DMEM Life Technology 12100046
Dog bile Isolated from a euthanized dog and sterilized by 0.2 μm syringe filter
Eosin Y Sigma-Aldrich E4009-5G prepare 0.1% of Eosin for working exclusion test
Fetal Bovine Serum (FBS) DNAbiotech DB9723-100ml Heat inactivation of FBS (30 min in 40 °C)
Fetal Bovine Serum (FCS) DNAbiotech DB9724-100ml Heat inactivation of FCS (30 min in 40 °C)
HEK293T cells BONbiotech BN_0012.1.14 Human embryonic kidney 293T
HEPES buffered saline (HBS) Sigma-Aldrich 51558-50ML 2x concentrate
Inverted fluorescence microscope OLYMPUS IX51
Penicillin Sigma-Aldrich P3032-10MU Working concentration: 100 IU/mL
Pepsin Roche 10108057001 Working concentration: 2 mg/mL, pH 2
Phosphate-buffered saline (PBS) DNAbiotech DB0011 This reagent solve in less than 1 min in D.W
Polybrene (Transfection reagent) Sigma-Aldrich TR-1003-G
RPMI medium BioIdea BI-1006-05
Sodium bicarbonate (NaHCO3) Sigma-Aldrich S5761-1KG
Streptomycin Sigma-Aldrich S9137-25G Working concentration: 100 μg/mL
Third-generation lentiviral plasmid (pCDH513b) SBI System Biosciences (BioCat GmbH) CD513B-1-SBI Transfer vector (obtained commercially from Molecular Medicine Research Department of Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran)
Third-generation lentiviral plasmid (pLPI and pLPII) Invitrogen (Life Technologies) K4975-00 Helper vector (obtained commercially from Molecular Medicine Research Department of Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran)
Third-generation lentiviral plasmid (pMD2G) Addgene Plasmid 12259 Helper vector (obtained commercially from Molecular Medicine Research Department of Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran)
Tris/EDTA Buffer (TE) DNAbiotech DB9713-100ml
Trypsin Sigma-Aldrich T9935-50MG 1x working solutions (pH 7.4–7.6)

References

  1. Deplazes, P., et al. Global distribution of alveolar and cystic echinococcosis. Advances in Parasitology. 95, 315 (2017).
  2. Borhani, M., et al. Echinococcoses in Iran, Turkey, and Pakistan: Old diseases in the new millennium. Clinical Microbiology Reviews. 34 (3), 0029020 (2021).
  3. Eckert, J., Thompson, R. C. A. Historical aspects of echinococcosis. Advances in Parasitology. 95, 1-64 (2017).
  4. Romig, T., et al. Ecology and life cycle patterns of Echinococcus species. Advances in Parasitology. 95, 213 (2017).
  5. Craig, P. S., Hegglin, D., Lightowlers, M. W., Torgerson, P. R., Wang, Q. Echinococcosis: control and prevention. Advances in Parasitology. 95, 55 (2016).
  6. Deplazes, P., et al. Global distribution of alveolar and cystic echinococcosis. Advances in Parasitology. 95 (1), 315 (2017).
  7. Tsai, I. I. J., et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature. 496 (7443), 57-63 (2013).
  8. Koziol, U., Brehm, K. Recent advances in Echinococcus genomics and stem cell research. Veterinary Parasitology. 213 (3-4), 92-102 (2015).
  9. Zheng, H., et al. The genome of the hydatid tapeworm Echinococcus granulosus. Nature Genetics. 45 (10), 1168-1175 (2013).
  10. Pérez-Victoria, J. M., Torres, A. P. T. C., Gamarro, F., Castanys, S. ABC transporters in the protozoan parasite Leishmania. International Microbiology. 4 (3), 159-166 (2001).
  11. Ehrenkaufer, G. M., Singh, U. Transient and stable transfection in the protozoan parasite Entamoeba invadens. Molecular and Biochemical Parasitology. 184 (1), 59-62 (2012).
  12. Moguel, B., Bobes, R. J., Carrero, J. C., Laclette, J. P. Transfection of Platyhelminthes. BioMed Research International. 2015, 206161 (2015).
  13. Tang, Y., Garson, K., Li, L., Vanderhyden, B. C. Optimization of lentiviral vector production using polyethylenimine-mediated transfection. Oncology Letters. 9 (1), 55-62 (2015).
  14. Mann, V. H., Suttiprapa, S., Rinaldi, G., Brindley, P. J. Establishing transgenic schistosomes. PLoS Neglected Tropical Diseases. 5 (8), 1230 (2011).
  15. Balcaitis, S., Weinstein, J. R., Li, S., Chamberlain, J. S., Möller, T. Lentiviral transduction of microglial cells. Glia. 50 (1), 48-55 (2005).
  16. Sastry, L., Johnson, T., Hobson, M. J., Smucker, B., Cornetta, K. Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Therapy. 9 (17), 1155-1162 (2002).
  17. Bowles, J., Blair, D., McManus, D. P. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Molecular and Biochemical Parasitology. 54 (2), 165-173 (1992).
  18. Rostami, S., et al. High resolution melting technique for molecular epidemiological studies of cystic echinococcosis: differentiating G1, G3, and G6 genotypes of Echinococcus granulosus sensu lato. Parasitology Research. 112 (10), 3441-3447 (2013).
  19. Mousavi, S. M., et al. Biological and morphological consequences of dsRNA-induced suppression of tetraspanin mRNA in developmental stages of Echinococcus granulosus. Parasites and Vectors. 13 (1), 190 (2020).
  20. Afgar, A., et al. MiR-339 and especially miR-766 reactivate the expression of tumor suppressor genes in colorectal cancer cell lines through DNA methyltransferase 3B gene inhibition. Cancer Biology & Therapy. 17 (11), 1126-1138 (2016).
  21. Ricardo, R., Phelan, K. Trypsinizing and subculturing mammalian cells. Journal of Visualized Experiments: JoVE. (16), e755 (2008).
  22. Wang, X., McManus, M. Lentivirus production. Journal of Visualized Experiments: JoVE. (32), e1499 (2009).
  23. Li, M., Husic, N., Lin, Y., Snider, B. J. Production of lentiviral vectors for transducing cells from the central nervous system. Journal of Visualized Experiments: JoVE. (63), e4031 (2012).
  24. Eslami, A., Lujan, J. Western blotting: sample preparation to detection. Journal of Visualized Experiments: JoVE. (44), e2359 (2010).
  25. Dezaki, E. S., et al. Comparison of ex vivo harvested and in vitro cultured materials from Echinococcus granulosus by measuring expression levels of five genes putatively involved in the development and maturation of adult worms. Parasitology Research. 115 (11), 4405-4416 (2016).
  26. Mousavi, S. M., et al. Calmodulin-specific small interfering RNA induces consistent expression suppression and morphological changes in Echinococcus granulosus. Scientific Reports. 9 (1), 1-9 (2019).
  27. Aboobaker, A. A., Blaxter, M. L. Functional genomics for parasitic nematodes and platyhelminths. Trends in Parasitology. 20 (4), 178-184 (2004).
  28. Elegheert, J., et al. Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nature Protocols. 13 (12), 2991 (2018).
  29. Mizukami, C., et al. Gene silencing in Echinococcus multilocularis protoscoleces using RNA interference. Parasitology International. 59 (4), 647-652 (2010).
  30. Thompson, R. C. A., Jenkins, D. J. Echinococcus as a model system: biology and epidemiology. International Journal for Parasitology. 44 (12), 865-877 (2014).
  31. Thompson, R. C. A., Thompson, R. C. A., Deplazes, P., Lymbery, A. J. Biology and systematics of Echinococcus. Advances in Parasitology. 95, 65-109 (2017).
  32. Brehm, K., Koziol, U. Echinococcus-host interactions at cellular and molecular levels. Advances in Parasitology. 95, 147-212 (2017).
  33. Moguel, B., et al. Transient transgenesis of the tapeworm Taenia crassiceps. SpringerPlus. 4, 496 (2015).

Play Video

Cite This Article
Mohammadi, M. A., Afgar, A., Faridi, A., Mousavi, S. M., Derakhshani, A., Borhani, M., Fasihi Harandi, M. Transient Transduction of the Strobilated Forms of Echinococcus granulosus. J. Vis. Exp. (187), e62783, doi:10.3791/62783 (2022).

View Video