Summary

Imagerie tridimensionnelle à grande échelle de l’organisation cellulaire dans le néocortex de souris

Published: September 05, 2018
doi:

Summary

Ici, nous décrivons une procédure pour la compensation des tissus, marquage fluorescent et l’imagerie à grande échelle du tissu de cerveau de souris qui, ainsi, permet la visualisation de l’organisation en trois dimensions des types de cellules dans le néocortex.

Abstract

Le néocortex mammifère se compose de nombreux types de neurones excitateurs et inhibiteurs, chacune avec des propriétés électrophysiologiques et biochimiques spécifiques, les connexions synaptiques, et in vivo des fonctions, mais leur base anatomique et fonctionnelle Organisation de cellulaires à l’échelle du réseau est mal comprise. Nous décrivons ici une méthode pour l’imagerie en trois dimensions des neurones marqués fluorescent à travers de vastes zones du cerveau pour l’enquête de l’organisation cellulaire corticale. Certains types de neurones sont étiquetés par l’injection de traceurs fluorescents de neuronales rétrogrades ou l’expression de protéines fluorescentes chez les souris transgéniques. Bloc des échantillons de cerveau, par exemple, un hémisphère, préparés après fixation, rendues transparentes avec des méthodes de compensation des tissus et soumis d’immunomarquage fluorescent des types spécifiques de cellules. Grandes surfaces sont analysés à l’aide de microscopes confocaux ou deux photons équipés d’objectifs de distance de travail grand et platines motorisées. Cette méthode peut résoudre l’organisation périodique des modules fonctionnels spécifiques au type microcolonne cellulaire dans le néocortex de souris. La procédure peut être utile pour l’étude de l’architecture cellulaire tridimensionnelle dans les zones du cerveau différentes et d’autres tissus complexes.

Introduction

Le néocortex mammifère est composé d’un grand nombre de types de cellules, chacune avec les modèles d’expression de gènes spécifiques, les propriétés électrophysiologiques et biochimiques, les connexions synaptiques, et in vivo fonctionne1,2 ,3,4,5,6,7. Si ces types de cellules sont organisés en structures répétées a été peu clair. Les colonnes corticales, y compris les colonnes de l’orientation visuelle et somatosensoriels barils, ont répété les structures, mais leur organisation cellulaire reste peu clair8,9. Ceux-ci sont présents dans les zones corticales spécifiques et ne sont pas un système à l’échelle du cerveau.

Dans la couche néocorticale 5, la grande majorité des neurones est classée en quatre grandes catégories. Un type majeur des neurones excitateurs, neurones de projection Sub cérébrale, projette des axones vers des cibles sous-corticales incluant les pons, la moelle épinière et colliculus supérieur et, représente donc la sortie corticale importante voie10. Neurones de projection corticale, un autre principal type de neurones excitateurs, innervent le cortex10. Neurones inhibiteurs contiennent également deux grandes catégories : les cellules exprimant le parvalbumine et exprimant la somatostatine11.

Des analyses récentes indiquent que les types de quatre cellules sont organisés en structures répétées12,13,14. Neurones de projection cérébrale Sub12,13,14 tant de neurones de projection corticale14 organisent en type cellulaire spécifique microcolumns avec un diamètre de 1 à 2 cellules. Les cellules exprimant le parvalbumine et exprimant la somatostatine alignent plus précisément microcolumns de neurones de projection Sub cérébrale mais pas avec microcolumns de neurones de projection corticale14. Microcolumns s’aligner régulièrement pour former un hexagonal tableau14 en treillis et sont présents dans plusieurs aires corticales, y compris les villes de visuels, somesthésiques et moteurs dans le cerveau de souris12,14 et dans la langue zones du cerveau humain13. Neurones dans la microcolonne individuel montrent une activité synchronisée et ont des réponses sensorielles semblables14. Ces observations indiquent que les types de cellules couche 5 organisent en une structure en treillis microcolonne qui représente la première organisation à l’échelle du cerveau connue de répéter les modules fonctionnels.

Microcolumns ont un rayon d’environ 10 µm et ont une périodicité spatiale d’environ 40 µm. En outre, l’orientation des microcolumns est parallèle à leurs dendrites apicaux et change en fonction de leur position dans le cortex14. Le système de la microcolonne est donc difficile d’analyser à l’aide des tranches de cortex conventionnels avec une épaisseur typique de quelques dizaines de micromètres. En outre, exige que l’analyse de la périodicité des données tridimensionnelles d’un large éventail de régions du cerveau et, par conséquent, la zone d’imagerie typique de la microscopie confocale ou l’imagerie in vivo 2 photons est trop étroite.

Récemment, les techniques ont été développées pour effacer les tissus épais15,16. Nous décrivons ici l’application de ces méthodes pour obtenir des images à grande échelle, en trois dimensions des types de grandes cellules en couche néocorticales souris 5 qui composent le système de la microcolonne. Neurones de projection subcerebral sont marqués par l’étiquetage rétrograde ou par l’expression de la protéine fluorescente verte améliorée dans Crym-egfp souris transgéniques12et projection corticale neurones sont étiquetés par le rétrograde marquage ou par l’expression de tdTomato en Tlx3cre/Ai9 souris17. Les cellules exprimant le parvalbumine et exprimant la somatostatine sont étiquetés par immunohistochimie. La méthode (anticorps échelle S) AbScale18 est utilisé pour l’anticorps coloration expériences, tandis que la méthode (voir Deep Brain) SeeDB19 est utilisé pour d’autres expériences. Ces méthodes de surmonter les difficultés susmentionnées des méthodes d’imagerie conventionnelles et révèlent l’organisation cellulaire précise de couche 514.

Protocol

Toutes les procédures expérimentales ont été approuvés par le Comité des expériences sur animaux RIKEN Wako et Comité de sécurité de Experiment RIKEN génétique recombiné et interprétés conformément aux directives institutionnelles des animaleries de la RIKEN Brain Science Institut. 1. préparation de l’imagerie Chambers L’imagerie chambre19 À partir de feuilles de caoutchouc de silicone, préparer une chambre av…

Representative Results

Nous marqué des neurones de projection corticale par l’expression de tdTomato dans Tlx3-cre/Ai9 souris transgéniques et visualisé des neurones de projection cérébrale secondaire par l’injection du traceur rétrograde CTB488 dans la protubérance. L’hémisphère gauche du cerveau était soumis à la méthode SeeDB et analysés à l’aide d’un microscope biphotonique avec une immersion en eau long objectif de distance de travail (25 X, N.A. 1,1, distance de t…

Discussion

Nous avons présenté les procédures pour obtenir des images en trois dimensions à grande échelle de l’organisation spécifique du type de cellule des types de grandes cellules en couche néocorticales souris 5. Par rapport à la coloration de la tranche conventionnelle, la méthode est plus utile dans la détermination de l’organisation en trois dimensions du néocortex. La méthode permet l’acquisition d’images de la plus large et les régions plus profondes du cerveau par rapport à la typique en vivo</…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Nous remercions Atsushi Miyawaki et Hiroshi Hama pour leurs conseils sur les expériences de elAbSca, Charles Yokoyama pour l’édition du manuscrit, Eriko Ohshima et Miyuki Kishino pour leur assistance technique. Ce travail a été soutenu par des fonds de recherche du RIKEN T.H. et subventions pour la recherche scientifique du ministère de l’éducation, Culture, Sports, Science et technologie (MEXT) du Japon pour T.H. (domaines innovants « Mésoscopique neuronaux » ; 22115004) et S.S. (25890023).

Materials

Crym-egfp transgenic mice MMRRC 012003-UCD
Tlx3-cre transgenic mice MMRRC 36547-UCD
ROSA-CAG-flox-tdTomato mice Jackson Laboratory JAX #7909
Silicone rubber sheet AS ONE 6-611-01 0.5 mm thickness
Silicone rubber sheet AS ONE 6-611-02 1.0 mm thickness
Silicone rubber sheet AS ONE 6-611-05 3.0 mm thickness
Petri dishes Falcon 351008
Cover glass Matsunami C022241
Cholera toxin subunit B (recombinant), Alexa Fluor 488 conjugate Invitrogen C22841
Cholera toxin subunit B (recombinant), Alexa Fluor 555 conjugate Invitrogen C22843
Cholera toxin subunit B (recombinant), Alexa Fluor 594 conjugate Invitrogen C22842
Cholera toxin subunit B (recombinant), Alexa Fluor 647 conjugate Invitrogen C34778
26G Hamilton syringe Hamilton 701N
Injector pump KD Scientific KDS 310 Pons injection
Injector pump KD Scientific KDS 100 Superior colliculus injection
Manipulator Narishige SM-15
Sodium pentobarbital Kyoritsu Seiyaku Somnopentyl
Isoflurane Pfizer
Lidocaine AstraZeneca Xylocaine injection 1% with epinephrine
Drill Toyo Associates HP-200
Avitene microfibrillar hemostat Davol Inc 1010090
Alonalfa Daiichi-Sankyo Alonalpha A
Surgical silk Ethicon K881H
Incubator UVP HB-1000 Hybridizer
Glass pipette Drummond Scientific Company 2-000-075
Electrode puller Sutter Instrument Company P-97
Paraffin Liquid, light Nacalai tesque 26132-35
Saline Otsuka 1326
Paraformaldehyde Nacalai tesque 26126-54
Tungsten needle Inter medical Φ0.1 *L200 mm
Vibratome Leica VT1000S
50 mL plastic tube Falcon 352070
α-thioglycerol Nacalai tesque 33709-62
D(-) Fructose Nacalai tesque 16315-55
BluTack Bostik CKBT-450000
Two-photon microscope Nikon A1RMP
Water-immersion long working distance objectives Nikon CFI Apo LWD 25XW, NA 1.1, WD 2 mm
Water-immersion long working distance objectives Nikon CFI LWD 16XW, NA 0.8, WD 3 mm
Motorized stage COMS PT100C-50XY
Filter Semrock FF01-492/SP-25
Filter Semrock FF03-525/50-25
Filter Semrock FF03-575/25-25
Filter Semrock FF01-629/56
Filter Chroma D605/55m
5 mL plastic tube AS ONE VIO-5B
2 mL plastic tube Eppendorf  0030120094
Urea Nacalai tesque 35905-35
Triton X-100 Nacalai tesque 35501-15
Glyserol Sigma-aldrich 191612
D(-)-sorbitol Wako 191-14735
Methyl-β-cyclodextrin Tokyo chemical industry M1356
γ-Cyclodextrin Wako 037-10643
N-acetyl-L-hydroxyproline Skin Essential Actives 33996-33-7
DMSO Nacalai tesque 13445-45
Bovine Serum Albumin Sigma-aldrich A7906
Tween-20 (1.1 g/mL) Nacalai tesque 35624-15
Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 555 Invitrogen A21422
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 555 Invitrogen A21428
Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647 Invitrogen A21235
Goat anti-Mouse IgG (H+L) Highly CrossAdsorbed Secondary Antibody, Alexa Fluor 488 Invitrogen A11029
Donkey anti-Rabbit IgG (H+L) Highly CrossAdsorbed Secondary Antibody, Alexa Fluor 488 Invitrogen A21206
Confocal microscope Olympus FV1000
Water-immersion long working distance objectives Olympus XLUMPLFLN 20XW, NA 1.0, WD 2 mm
Anti-NeuN Millipore MAB377
Anti-NeuN Millipore ABN78
Anti-CTIP2 Abcam ab18465
Anti-Statb2 Abcam ab51502
Anti-GAD67 Millipore MAB5406
Anti-GABA Sigma A2052
Anti-Parvalbumin Swant 235
Anti-Parvalbumin Frontier Institute PV-Go-Af460
Anti-Parvalbumin Sigma P3088
Anti-Parvalbumin Abcam ab11427
Anti-Somatostatin Peninsula Laboratories T-4103
Anti-c-Fos CalbioChem PC38

References

  1. Lein, E. S., et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 445 (7124), 168-176 (2007).
  2. Defelipe, J., et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience. 14 (3), 202-216 (2013).
  3. Jiang, X., et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science. 350 (6264), aac9462 (2015).
  4. Sorensen, S. A., et al. Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. Cerebral Cortex. 25 (2), 433-449 (2015).
  5. Zeisel, A., et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 347, 1138-1142 (2015).
  6. Tasic, B., et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neuroscience. 19 (2), 335-346 (2016).
  7. Zeng, H., Sanes, J. R. Neuronal cell-type classification: Challenges, opportunities and the path forward. Nature Reviews Neuroscience. 18 (9), 530-546 (2017).
  8. Horton, J. C., Adams, D. L. The cortical column: a structure without a function. Philosophical Transactions of the Royal Society B: Biological Sciences. 360 (1456), 837-862 (2005).
  9. Costa, N. M., Martin, K. A. C. Whose cortical column would that be?. Frontiers in Neuroanatomy. 4, (2010).
  10. Molyneaux, B. J., Arlotta, P., Menezes, J. R. L., Macklis, J. D. Neuronal subtype specification in the cerebral cortex. Nature Reviews Neuroscience. 8 (6), 427-437 (2007).
  11. Hioki, H., et al. Cell type-specific inhibitory inputs to dendritic and somatic compartments of parvalbumin-expressing neocortical interneuron. Journal of Neuroscience. 33 (2), 544-555 (2013).
  12. Maruoka, H., Kubota, K., Kurokawa, R., Tsuruno, S., Hosoya, T. Periodic organization of a major subtype of pyramidal neurons in neocortical layer V. Journal of Neuroscience. 31 (50), 18522-18542 (2011).
  13. Kwan, K. Y., et al. Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex. Cell. 149 (4), 899-911 (2012).
  14. Maruoka, H., Nakagawa, N., Tsuruno, S., Sakai, S., Yoneda, T., Hosoya, T. Lattice system of functionally distinct cell types in the neocortex. Science. 358 (6363), 610-615 (2017).
  15. Treweek, J. B., Gradinaru, V. Extracting structural and functional features of widely distributed biological circuits with single cell resolution via tissue clearing and delivery vectors. Current Opinion in Biotechnology. 40, 193-207 (2016).
  16. Tainaka, K., Kuno, A., Kubota, S. I., Murakami, T., Ueda, H. R. Chemical Principles in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling. Annual Review of Cell and Developmental Biology. 32 (1), (2016).
  17. Gerfen, C. R., Paletzki, R., Heintz, N. GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron. 80 (6), 1368-1383 (2013).
  18. Hama, H., et al. ScaleS: an optical clearing palette for biological imaging. Nature Neuroscience. 18 (10), 1518-1529 (2015).
  19. Ke, M. T., Fujimoto, S., Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nature Neuroscience. 16 (8), 1154-1161 (2013).
  20. Gage, G. J., Kipke, D. R., Shain, W. Whole Animal Perfusion Fixation for Rodents. Journal of Visualized Experiments. (65), e3564 (2012).
  21. Kim, S. -. Y., et al. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proceedings of the National Academy of Sciences. 112 (46), E6274-E6283 (2015).
  22. Murray, E., et al. Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell. 163 (6), 1500-1514 (2015).
  23. Ke, M. T., et al. Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Reports. 14 (11), 2718-2732 (2016).
  24. Lee, E., et al. ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Scientific Reports. 6, 18631 (2016).
  25. Renier, N., et al. Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes. Cell. 165 (7), 1789-1802 (2016).
  26. Kubota, S. I., et al. Whole-body profiling of cancer metastasis with single-cell resolution. Cell Reports. 20 (1), 236-250 (2017).
  27. Li, W., Germain, R. N., Gerner, M. Y. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D). Proceedings of the National Academy of Sciences. 114 (35), E7321-E7330 (2017).
  28. Liu, A. K. L., Lai, H. M., Chang, R. C. C., Gentleman, S. M. Free of acrylamide sodium dodecyl sulphate (SDS)-based tissue clearing (FASTClear): a novel protocol of tissue clearing for three-dimensional visualization of human brain tissues. Neuropathology and Applied Neurobiology. 43 (4), 346-351 (2017).
check_url/kr/58027?article_type=t

Play Video

Cite This Article
Yoneda, T., Sakai, S., Maruoka, H., Hosoya, T. Large-scale Three-dimensional Imaging of Cellular Organization in the Mouse Neocortex. J. Vis. Exp. (139), e58027, doi:10.3791/58027 (2018).

View Video