Summary

Experimental Metastasis and CTL Adoptive Transfer Immunotherapy Mouse Model

Published: November 26, 2010
doi:

Summary

An experimental lung metastasis and CTL immunotherapy mouse model for analysis of tumor cells-T cell interaction in vivo.

Abstract

Experimental metastasis mouse model is a simple and yet physiologically relevant metastasis model. The tumor cells are injected intravenously (i.v) into mouse tail veins and colonize in the lungs, thereby, resembling the last steps of tumor cell spontaneous metastasis: survival in the circulation, extravasation and colonization in the distal organs. From a therapeutic point of view, the experimental metastasis model is the simplest and ideal model since the target of therapies is often the end point of metastasis: established metastatic tumor in the distal organ. In this model, tumor cells are injected i.v into mouse tail veins and allowed to colonize and grow in the lungs. Tumor-specific CTLs are then injected i.v into the metastases-bearing mouse. The number and size of the lung metastases can be controlled by the number of tumor cells to be injected and the time of tumor growth. Therefore, various stages of metastasis, from minimal metastasis to extensive metastasis, can be modeled. Lung metastases are analyzed by inflation with ink, thus allowing easier visual observation and quantification.

Protocol

1. Experimental Metastasis Mouse Model On the day before the tumor cell injections, seed one T75 flask with up to 1 x 107 CMS4-Met cells in 10 mL of RPMI medium containing 10% serum to obtain fast-growing tumor cells. Incubate overnight at 37°C. On the day of the injection, remove the medium and rinse the cells once with PBS, then harvest the tumor cells with 0.05% trypsin-EDTA at 37°C for 5 minutes. Stop the reaction with 10 mL of RPMI medium containing 10% serum. Transfer cel…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Supported by grants from the National Institutes of Health (CA133085 to K.L.) and the American Cancer Society (RSG-09-209-01-TBG to K.L.).

Materials

Solutions:

India Ink Solution (17):

  1. Pour 150 ml of distilled water into a 250 ml flask.
  2. Add 4 drops ammonium hydroxide to the distilled water.
  3. Add 30 ml India Ink stock (i.e. Sanford Black Magic Waterproof Drawing Ink 4465 Item 44011) to the ammonia and water mixture.
  4. Top off with distilled water to a volume of 200 ml. Solution is ready for injection.

Fekete’s Solution (17):

Fekete’s solution is used to bleach India ink-inflated tumor-bearing lungs to distinguish white tumor nodules from the black background of normal tissues.

  1. Add 350ml 95% EtOH to 1L glass bottle.
  2. Add 150ml distilled water
  3. Add 50ml formaldehyde
  4. Add 25ml glacial acidic acid

References

  1. Ryan, M. H., Bristol, J. A., McDuffie, E., Abrams, S. I. Regression of extensive pulmonary metastases in mice by adoptive transfer of antigen-specific CD8(+) CTL reactive against tumor cells expressing a naturally occurring rejection epitope. J Immunol. 167 (8), 4286-4292 (2001).
  2. Caldwell, S. A., Ryan, M. H., McDuffie, E., Abrams, S. I. The Fas/Fas ligand pathway is important for optimal tumor regression in a mouse model of CTL adoptive immunotherapy of experimental CMS4 lung metastases. J Immunol. 171 (5), 2402-2412 (2003).
  3. Liu, K., Caldwell, S. A., Greeneltch, K. M., Yang, D., Abrams, S. I. CTL Adoptive Immunotherapy Concurrently Mediates Tumor Regression and Tumor Escape. J Immunol. 176 (6), 3374-3382 (2006).
  4. Yang, D., Stewart, T. J., Smith, K. K., Georgi, D., Abrams, S. I., Liu, K. Downregulation of IFN-gammaR in association with loss of Fas function is linked to tumor progression. International journal of cancer. 122 (2), 350-362 (2008).
  5. Pages, F., Berger, A., Camus, M. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 353 (25), 2654-2666 (2005).
  6. Galon, J., Costes, A., Sanchez-Cabo, F. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 313 (5795), 1960-194 (2006).
  7. Strater, J., Hinz, U., Hasel, C. Impaired CD95 expression predisposes for recurrence in curatively resected colon carcinoma: clinical evidence for immunoselection and CD95L mediated control of minimal residual disease. Gut. 54 (5), 661-665 (2005).
  8. Camus, M., Tosolini, M., Mlecnik, B. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer research. 69 (6), 2685-2693 (2009).
  9. Dudley, M. E., Wunderlich, J. R., Yang, J. C. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol. 23 (10), 2346-2357 (2005).
  10. Srivastava, M. K., Sinha, P., Clements, V. K., Rodriguez, P., Ostrand-Rosenberg, S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer research. 70 (1), 68-77 (2010).
  11. Nagaraj, S., Gabrilovich, D. I. Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer research. 68 (8), 2561-2563 (2008).
  12. Nguyen, D. X., Bos, P. D., Massague, J. Metastasis: from dissemination to organ-specific colonization. Nature reviews. 9 (4), 274-284 (2009).
  13. Heijstek, M. W., Kranenburg, O., Rinkes, B. o. r. e. l., H, I. Mouse models of colorectal cancer and liver metastases. Digestive surgery. 22 (1-2), 1-2 (2005).
  14. Yang, D., Ud Din, N., Browning, D. D., Abrams, S. I., Liu, K. Targeting lymphotoxin beta receptor with tumor-specific T lymphocytes for tumor regression. Clin Cancer Res. 13 (17), 5202-5210 (2007).
  15. Yang, D., Thangaraju, M., Browning, D. D. IFN Regulatory Factor 8 Mediates Apoptosis in Nonhemopoietic Tumor Cells via Regulation of Fas Expression. J Immunol. 179 (7), 4775-4782 (2007).
  16. Yang, D., Thangaraju, M., Greeneltch, K. Repression of IFN regulatory factor 8 by DNA methylation is a molecular determinant of apoptotic resistance and metastatic phenotype in metastatic tumor cells. Cancer research. 67 (7), 3301-3309 (2007).
  17. Wexler, H. Accurate identification of experimental pulmonary metastases. Journal of the National Cancer Institute. 36 (4), 641-645 (1966).
check_url/kr/2077?article_type=t

Play Video

Cite This Article
Zimmerman, M., Hu, X., Liu, K. Experimental Metastasis and CTL Adoptive Transfer Immunotherapy Mouse Model. J. Vis. Exp. (45), e2077, doi:10.3791/2077 (2010).

View Video