An experimental lung metastasis and CTL immunotherapy mouse model for analysis of tumor cells-T cell interaction in vivo.
Experimental metastasis mouse model is a simple and yet physiologically relevant metastasis model. The tumor cells are injected intravenously (i.v) into mouse tail veins and colonize in the lungs, thereby, resembling the last steps of tumor cell spontaneous metastasis: survival in the circulation, extravasation and colonization in the distal organs. From a therapeutic point of view, the experimental metastasis model is the simplest and ideal model since the target of therapies is often the end point of metastasis: established metastatic tumor in the distal organ. In this model, tumor cells are injected i.v into mouse tail veins and allowed to colonize and grow in the lungs. Tumor-specific CTLs are then injected i.v into the metastases-bearing mouse. The number and size of the lung metastases can be controlled by the number of tumor cells to be injected and the time of tumor growth. Therefore, various stages of metastasis, from minimal metastasis to extensive metastasis, can be modeled. Lung metastases are analyzed by inflation with ink, thus allowing easier visual observation and quantification.
1. Experimental Metastasis Mouse Model
2. Cytotoxic T-Lymphocyte (CTL) Adoptive Transfer Immunotherapy
3. Visualization of Lung Metastases
4. Representative Metastases in Visualized Lungs
5. Representative Results
Figure 1. Experimental scheme for experimental tumor metastasis and CTL adaptive transfer immunotherapy mouse model. Red dots indicate tumor cells and green dots indicate CTLs.
Figure 2. Disruption of IRF8 function enhanced the metastatic potential of tumor cells. Mouse mammary carcinoma cell line 4T1 was stably transfected with vector (4T1.Vector) or vector expressing an IRF8 dominant-negative mutant K79E (4T1.IRF8K79E) (15, 16). Tumor cells were injected i.v. into mouse lateral tail veins. Tumor-bearing lungs were inflated with India ink to visualize tumor nodules. Tumor nodules are easily seen as white spots on the black lung tissue background.
Figure 3. Histological analysis of efficacy of CTL adoptive transfer immunotherapy. Mouse sarcoma cell line CMS4-Met was injected i.v. into mouse lateral tail veins. Three days later, saline (A) or tumor-specific T cells (B) were injected into the tumor-bearing mice. Lungs were analyzed six days after CTL treatment by conventional H&E histological staining. Tumor nodules are indicated by arrows.
Figure 4. Visualization of tumor nodules by India ink inflation. Mouse sarcoma cell line CMS4-Met was injected i.v. into mouse lateral tail veins. Three days later, saline (Control) or tumor-specific T cells (+CTL) were injected into the tumor-bearing mice. Lungs were analyzed fourteen days after CTL treatment. The white spots, which are tumor nodules, allow for easy quantification of the efficacy of CTL treatment.
The authors have nothing to disclose.
Supported by grants from the National Institutes of Health (CA133085 to K.L.) and the American Cancer Society (RSG-09-209-01-TBG to K.L.).
Solutions:
India Ink Solution (17):
Fekete’s Solution (17):
Fekete’s solution is used to bleach India ink-inflated tumor-bearing lungs to distinguish white tumor nodules from the black background of normal tissues.