2.10:

Ladder Diagrams: Redox Equilibria

JoVE 핵심
Analytical Chemistry
JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.  전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
JoVE 핵심 Analytical Chemistry
Ladder Diagrams: Redox Equilibria

258 Views

01:30 min

April 04, 2024

Ladder diagrams are useful tools for understanding redox equilibrium reactions, especially the effects of concentration changes on the electrochemical potential of the reaction. The vertical axis in the redox ladder diagrams represents the electrochemical potential, E. The area of predominance is demarcated using the Nernst equation.

Consider the Fe3+/Fe2+ half-reaction, which has a standard-state potential of +0.771 V. At potentials more positive than +0.771 V, Fe3+ predominates, whereas Fe2+ predominates at potentials more negative than +0.771 V. When the Fe3+/Fe2+ half-reaction is coupled with the Sn4+/Sn2+ reaction, the concentration of Fe3+ can be reduced by adding Sn2+ to excess. In this case, the potential of the resulting solution approaches +0.154 V down to +0.771 V, and Fe2+ and Sn4+ predominate.

To understand the interdependence between change in solution pH and electrochemical potential, consider the example of UO22+/U4+ half-reaction, whose electrochemical potential varies with the pH of the solution. As the pH of the solution decreases, the electrochemical potential increases, changing the dominant species from U4+ to UO22+.