The objective of this report is to describe the protocols to derive the retinal pigment epithelium (RPE) from induced pluripotent stem (iPS) cells using different sizes of embryoid bodies.
Pluripotent stem cells possess the ability to proliferate indefinitely and to differentiate into almost any cell type. Additionally, the development of techniques to reprogram somatic cells into induced pluripotent stem (iPS) cells has generated interest and excitement towards the possibility of customized personal regenerative medicine. However, the efficiency of stem cell differentiation towards a desired lineage remains low. The purpose of this study is to describe a protocol to derive retinal pigment epithelium (RPE) from iPS cells (iPS-RPE) by applying a tissue engineering approach to generate homogenous populations of embryoid bodies (EBs), a common intermediate during in vitro differentiation. The protocol applies the formation of specific size of EBs using microwell plate technology. The methods for identifying protein and gene markers of RPE by immunocytochemistry and reverse-transcription polymerase chain reaction (RT-PCR) are also explained. Finally, the efficiency of differentiation in different sizes of EBs monitored by fluorescence-activated cell sorting (FACS) analysis of RPE markers is described. These techniques will facilitate the differentiation of iPS cells into RPE for future applications.
Induced pluripotent stem (iPS) cells are a type of pluripotent stem cell derived by reprogramming adult cells with extrinsic factors1. In contrast, embryonic stem cells (ESCs), another type of pluripotent stem cell, are generated from the inner cell mass of the blastocyst2-3. Despite their different origins, iPS cells and ESCs are comparable in their unlimited capacity to replicate in vitro and in their capacity to differentiate into any cell type4-5. These characteristics of iPS cells make them ideal candidates for applications in personalized regenerative medicine. Recent research efforts are focused on developing robust differentiation protocols for producing specialized adult cells including retinal pigment epithelium (RPE)6-11.
For potential clinical applications of iPS derived cells, a directed differentiation for that specific cell type is essential. There are various methods published for directed differentiation of both ESCs and iPS cells into RPE that varies greatly in their efficiency6-7, 12-16. We still do not know many of the molecular events that govern the cell/tissue fate during development or differentiation. In recent years, efforts have been made to develop the differentiation protocol that can mimic the embryological development as much as possible. During the blastocyst phase, uncommitted population of stem cells are together in a three dimensional microenvironment. So, various strategies were applied to make the ESC/iPS cells assembled together and grow them in three dimensions. These stem cell aggregates are called embryoid bodies (EBs). Studies have shown that EB differentiation of stem cells mimic early stage of embryo development and can spontaneously give rise to primitive endoderm on its exterior surface. Later, as EB development progresses, differentiated cell phenotypes of all three germ lineages appear17-18. Therefore, EBs based differentiation protocols have attracted a lot of attention for in vitro differentiation of ESC/iPS cells and are a good candidate for RPE generation from pluripotent stem cells13.
EBs can be made using several methods from ESC/iPS cells. Initially, EBs were made by scraping off adherent colonies and maintaining them in non-adherent suspension culture. However, this approach yields heterogeneous population of EBs that causes low reproducibility. Hanging drop cell culture and microwell based EBs formation are other popular techniques for EBs formation which yield homogenous EBs of defined sizes that are highly reproducible. Furthermore, the microwell technique can yield large number of aggregates with less effort.
Differentiation of cells within EBs is regulated by a multiplex of morphogenic cues from the extracellular and intracellular microenvironment. In contrast to differentiation in a monolayer format, EBs provide a platform for complex assembly of cells and intercellular signaling to occur17. Interestingly, the number of pluripotent stem cells used to make individual EBs was observed to influence the fate of cells. For example, in a hematopoietic differentiation study of human ESCs, it was observed that 500-cell EB promoted differentiation towards myeloid lineage whereas 1,000-cell EB pushed towards erythroid lineage20. In another study, smaller EBs favored endoderm differentiation whereas larger EBs promoted towards neuro-ectoderm differentiation11, 17.
These past studies strongly suggest that the number of ESC/iPS cells used to make individual EBs affect the EBs based differentiation to any cell types. However, to our knowledge, there are no current studies that have elucidated the impact of EBs size in its propensity to differentiate towards RPE. The goal of this study is to characterize the influence of EB size on induced pluripotent stem (iPS) cells – retinal pigment epithelium (iPS-RPE) differentiation and to identify the optimum cell number to make the EBs for directed differentiation towards RPE lineage.
1. Preparation of Culture Reagents and Culture Plates
2. iPS Culture
3. Passaging of iPS Cells
4. Generation of EBs Using Microwell Plates
5. Plating EBs and Initiating Differentiation
6. RNA Extraction and PCR
7. Immunocytochemistry
8. Staining for FACS Analysis
9. iPS-RPE Isolation and Culture
In this experiment, iPS cells were cultured and differentiated into the RPE lineage from EBs. EBs of controlled sizes were formed using microwell plates. As seen in Figure 1 EB formation was homogenous in the microwell plates. These EBs were then collected and plated on 6-well plates (Figure 2).
RPE can be identified by their classical hexagonal morphology, pigmentation, and expression of RPE markers. After 12 weeks of culture, the 200-cell EBs had developed astrocyte and fibroblast morphology. No pigmentation was observed in these cells (Figure 3A). Larger EBs developed a monolayer of classical RPE morphology and pigmentation (Figure 3B and C) Immunocytochemistry to detect RPE markers, MITF and ZO1 revealed co-expression of these proteins that had been derived from 500-cell and 3,000-cell EBs (Figure 4).
Expressions of eye field and RPE genes were monitored by PCR. Figure 5 shows the gene expression profile of neuroectodermal, eye field precursors, and RPE markers in different sizes of EBs. Importantly, the specific RPE marker, RPE65 was detected beginning at day 17.
To quantify the yield of cells that had differentiated into RPE lineage, FACS analysis was performed to detect the neuroectodermal and RPE precursor markers, PAX6 and MITF respectively. Figure 6A shows neuroectodermal marker PAX6 in different sizes of EBs at different time points. Approximately 50% of the analyzed cells were positive for Pax6 on day 6 of culture in the 3,000-cell EBs. Additionally, FACS analysis of RPE marker, MITF on varied EB sizes revealed that 20% of the cells expressed MITF by Day 60 of differentiation.
Cultured RPE are also characterized by their ability to lose their pigment and polygonal morphology and obtain a fibroblast phenotype upon passaging. Therefore, to determine if the iPS derived RPE possess these characteristics, we mechanically isolated and passaged the cells. Figure 7A shows the newly passaged cells have lost pigment and gained fibroblast morphology. Additionally, these cells proliferated and regained the classical polygonal morphology upon confluence (Figure 7B). Within a few weeks, these cells regained their pigmentation (Figure 7C).
Gene | NICB reference | Sequence (5'-3') | Size (bp) | |
Pax6 | NM_001258465.1 | F | CGGAGTGAATCAGCT CGGTG |
300 |
R | CCGCTTATACTGGGC TATTTTGC |
|||
RPE65 | NM_000329.2 | F | GCCCTCCTGCACAAG TTTGACTTT |
259 |
R | AGTTGGTCTCTGTGC AAGCGTAGT |
|||
RX | NM_013435.2 | F | GAATCTCGAAATCTC AGCCC |
279 |
R | CTTCACTAARRRGCT CAGGAC |
|||
MITF | NM_198178.2 | F | TTCACGAGCGTCCTG TATGCAGAT |
106 |
R | TTGCAAAGCAGGATC CATCAAGCC |
|||
GAPDH | NM_001256799.1 | F | ACCACAGTCCATGCC ATCAC |
452 |
R | TCCACCACCCTGTTG CTGTA |
Table 1. PCR primer sequences for Pax6, RPE65, RX, MITF and GAPDH genes.
Figure 1. Formation of EBs with microwell plates. Each microwell contains (A) 100 cells, (B) 200 cells, (C) 500 cells, and (D) 3,000 cells. Cells were incubated 24 hr at 37 ºC and 5% CO2 for the formation of EBs. (Magnification 100X, scale bar = 400 µm). Please click here to view a larger version of this figure.
Figure 2. EBs harvested from microwell plates. (A) 200-cell EB, (B) 500-cell EB, (C) 3,000-cell EB, and (D) 15,000-cell EB. (Magnification 200X, scale bar = 200 µm). Please click here to view a larger version of this figure.
Figure 3. iPS-derived RPE from different sizes of EBs. EBs were cultured for 12 weeks. (A) 200-cell EBs had only developed astrocyte and fibroblast morphology without pigmentation; while 80% – 90% of the cells in the 500-cell EBs (B and C) developed a monolayer of polygonal pigmented cells. (A & B: Magnification 100X, scale bar = 400 µm; (C): Magnification 200X, scale bar = 200 µm). Please click here to view a larger version of this figure.
Figure 4. Co-expression of MITF and ZO1. 500- and 3,000-cell EBs expressed MITF and ZO1 after 17 days of differentiation. (Magnification 400X, scale bar = 20 µm). Please click here to view a larger version of this figure.
Figure 5. Gene expression profile of different sizes of EBs at different time points of differentiation. Please click here to view a larger version of this figure.
Figure 6. FACS analysis of varied EB size for RPE differentiation. (A) FACS data of neuroectodermal marker PAX6 in different sizes of EBs during differentiation. (B) FACS analysis of RPE marker MiTF on varied EB sizes at day 60 of differentiation. The highest level of MITF reached 20% and was constant between EB size of 500, 3,000, and 15,000 cells.
Figure 7. Continued culture of manually isolated RPE. (A) RPE was subcultured and acquired fibroblast morphology after passage. (B & C) Cells developed polygonal morphology and pigmentation over time. (Magnification 100X, scale bar = 400 µm). Please click here to view a larger version of this figure.
To realize the full promise of pluripotent stem cells for cell therapy, it is necessary to regulate their differentiation in a consistent and reproducible way. This report describes protocols to form size-controlled EBs using microwell plate technology, initiate differentiation toward RPE and identify protein and gene markers of RPE. To synchronize the in vitro differentiation, homogenous sizes of EBs were formed by known numbers of iPS cells centrifuged in microwell plates by forced aggregation. Immunocytochemistry and reverse-transcription polymerase chain reaction (RT-PCR) are used to monitor the expressions RPE proteins and genes of explained. Finally, the efficiency of differentiation in different sizes of EBs was analyzed by FACS analysis. These techniques can facilitate the differentiation of iPS cells into RPE for future applications.
There are several crucial points in this method that must be carefully executed to ensure the success of this protocol and attainment of accurate data. The first key step occurs during the iPS cell culture. iPS cells must be maintained in a pluripotent state to maintain their stemness. The cells must have the medium changed daily in order to maintain appropriate levels of bFGF and be carefully inspected daily for signs of differentiation. Undifferentiated iPS cells grow as compact multicellular colonies. The cells should have a high nuclear to cytoplasm ratio and prominent nucleoli. The iPS colonies are characterized by a distinct border, with several layers of cells at the center. Signs of differentiation include loss of defined colony borders, non-uniform cell morphology, and the appearance of obvious cell types, such as neurons and fibroblasts. Single cells that have differentiated can be removed by dispase and rinsing, however, colonies with these characteristics must be manually removed from the culture22. Preparation of a single iPS cell suspension for forming the EBs is the next critical step. It is important to prepare a suspension without cell aggregates in order to accurately deliver the desired number of cells to the microwell plate and prepare the desired size EB. RNA preparations for PCR analysis are also important. Inconsistent RNA quality is a significant source of variability in PCR data. RNA extraction should yield minimally degraded RNA for best results. Successful RNA extraction will yield total RNA with minimal degradation and free of any contaminating RNases. After determination of the RNA concentration by spectrophotometry at 260 nm, the purity of the sample should be determined at 230 and 280 nm to detect contamination with polysaccharides or protein. The 230:260:280 ratio for RNA should be 1:2:1 to indicate high quality RNA with no contamination23 . Finally, it is important to adequately fix the cells for FACS staining. During this fixation step, the cells must be separated to prevent clumping. Insufficient cell resuspension prior to permeabilization will lead to cell clumping and inaccurate staining.
We recommend that the protocol be followed as described, however a few modifications can be made if necessary. During the generation of EBs described in Step 4, the number of cells per EB can range between 500 to 3,000 to achieve a high yield of cells differentiated into RPE. If the number of iPS cells is limited, 500-cell EBs will produce RPE comparable to the 3,000-cell EBs. Extra care must be taken during the RNA extraction process described in Step 6. Samples should be run in triplicate to ensure that high quality RNA can be acquired. During immunocytochemistry as described in Step 7, the primary and secondary antibody concentrations can be adjusted as necessary to improve signal intensity and reduce background. The appropriate positive and negative controls should be included in the assay. During Step 8, FACS analysis, if the expected results are not acquired after staining, a small sample of the stained cells can be placed on a slide and viewed with a microscope to visualize staining. The appropriate positive and negative controls should be included in the assay. If the cells are not stained as expected, the antibody concentrations can be increased or decreased as needed.
The technique described in this report will result in a higher yield of RPE than spontaneous differentiation, without the use of added chemicals. However, the main limitation of this approach is that there will also be a large number of non-RPE cells generated. Therefore, the RPE must be carefully selected out and enriched as described in Step 9 to ensure a homogenous population.
The significance of this approach is that a higher yield of RPE can be derived from iPS cells than spontaneous differentiation techniques. The use of small molecules to derive RPE from iPS has also been reported to give a high yield of differentiated cells, however, that technique is much more complex and requires the timing and concentrations of the small molecules to be optimized to achieve the desired results 7,10. In addition, the small molecules used in those methods have pleiotropic effects which can confound the results.
The described method can be used to make EBs of desired sizes with high reproducibility. This technique generated EBs of uniform sizes which were used to optimize the differentiation of iPS cells towards the RPE lineage without the use of additional chemicals. The iPS-RPE cells derived from EBs can then be further used in transplantation studies to confirm their integration into the retina in a functional organization. These cells can also provide a good research model to study the pathogenesis of various RPE diseases in vitro. The utility of this approach can be applied to the directed differentiation into many other cell types, depending upon the size of the EBs and the in vivo origin of the cell in the blastocyst. Cells of the ectoderm will give rise to neurons, epidermis, hair and mammary gland cells; endoderm will give rise to stomach, colon, lungs, and intestinal cells; mesoderm will give rise to skeletal muscle, heart, kidney, and connective tissue cells 3,11,19. Once the correct EB size has been determined, the differentiated cells need only to be analyzed by immunocytochemistry or FACS for the correct expression of marker proteins.
The authors have nothing to disclose.
The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense. This research was performed while the authors Alberto Muñiz, Ramesh R Kaini, Whitney A Greene and Jae-Hyek Choi held a National Research Council Postdoctoral Research Associateship at the USAISR. This work was supported by U.S. Army Clinical Rehabilitative Medicine Research Program (CRMRP) and Military Operational Medicine Research Program (MOMRP).
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
mTeSR1 media + 5X supplement | Stem Cell Technologies | 5850 | |
Y-27632 (Rock Inhibitor) | Stem Cell Technologies | 72304 | |
DMEM/F12 | Life Technologies | 11330-032 | |
2-Mercaptoethanol | Sigma | M-7154 | |
Non essential amino acids | Hyclone(Fisher) | SH30853.01 | |
Knockout serum replacement | Life Technologies | 10828-028 | |
Gentamicin | Life Technologies | 15750-060 | |
L-Glutamine | Life Technologies | 25030-081 | |
MEM media | Life Technologies | 10370-021 | |
N1 supplement | Sigma | N-6530-5ML | |
Taurine | Sigma | T-8691-25G | |
Hydrocortisone | Sigma | H0888-1G | |
Fetal bovine serum | Hyclone(Fisher) | SH3008803HI | |
Triiodo-l-thyronine sodium salt | Sigma | T6397 | |
Sodium hydroxide | Sigma | S5881 | |
Dispase | Life Technologies | 17105-041 | |
Matrigel | BD Biosciences | 354277 | |
Phosphate buffered saline | Hyclone(Fisher) | 10010-023 | |
Aggrewell 400 plate | Stem Cell Technologies | 27940 | |
AggreWell medium | Stem Cell Technologies | 5893 | |
Accutase | Stem Cell Technologies | 7920 | |
BD Cytofix/Cytoperm Fixation/Permeabilization Kit | BD Biosciences | 554714 | |
Mouse Anti-PAX6 antibody | Developmental Studies Hybridoma Bank | ||
Rabbit Anti- RX antibody | Abcam | Ab23340 | |
Mouse Anti-MITF antibody | Thermo Scientific | MS-772-P | |
Rabbit Anti-ZO-1 antibody | Invitrogen | 40-2200 | |
RNeasy plus mini kit | Qiagen | 74134 | |
PCR master mix | promega | M7502 | |
High capacity RNA to c DNA kit | Life Technologies | 4387406 |