Özet

Preparação de sementes de palma dura para análise por espectrometria de massa assistida por dessorção/ionização assistida por matriz

Published: June 30, 2023
doi:

Özet

Este protocolo teve como objetivo descrever orientações detalhadas sobre a preparação de seções de amostras de sementes duras com baixo teor de água para análise de MALDI-IMS, mantendo a distribuição e abundância originais dos analitos e fornecendo sinal de alta qualidade e resolução espacial.

Abstract

A espectrometria de massas com dessorção/ionização-imagem a laser assistida por matriz (MALDI-IMS) é aplicada para identificar compostos em seus ambientes nativos. Atualmente, o MALDI-IMS é frequentemente utilizado em análises clínicas. Ainda assim, existe uma excelente perspectiva para a melhor aplicação desta técnica para o entendimento das informações fisiológicas dos compostos químicos em tecidos vegetais. No entanto, a preparação pode ser desafiadora para amostras específicas de materiais botânicos, pois o MALDI-IMS requer fatias finas (12-20 μm) para aquisição adequada de dados e análise bem-sucedida. Nesse sentido, desenvolvemos previamente um protocolo de preparo de amostras para obtenção de cortes finos de sementes duras de Euterpe oleracea (açaí), possibilitando seu mapeamento molecular pelo MALDI-IMS.

Aqui, mostramos que o protocolo desenvolvido é adequado para o preparo de outras sementes do mesmo gênero. Resumidamente, o protocolo baseou-se na submersão das sementes em água deionizada por 24 h, incorporação das amostras com gelatina e seccionamento em criostático climatizado. Em seguida, para deposição da matriz, uma plataforma de movimento xy foi acoplada a um spray de agulha de ionização por eletrospray (ESI) usando uma solução de ácido 2,5-dihidroxibenzóico (DHB) 1:1 (v/v) e metanol com ácido trifluoroacético a 0,1% a 30 mg/mL. Os dados de sementes de E. precatoria e E. edulis foram processados por meio de software para mapear seus padrões metabólitos.

Oligômeros de hexose foram mapeados dentro de fatias de amostras para comprovar a adequação do protocolo para essas amostras, pois se sabe que essas sementes contêm grandes quantidades de manano, um polímero da hexose manose. Como resultado, foram identificados picos de oligômeros de hexose, representados por adutos [M + K]+ de (Δ = 162 Da). Assim, o protocolo de preparo de amostras, previamente desenvolvido sob medida para sementes de E. oleracea , também possibilitou a análise MALDI-IMS de outras duas sementes de palma dura. Em suma, o método pode constituir uma ferramenta valiosa para pesquisas em morfoanatomia e fisiologia de materiais botânicos, especialmente a partir de amostras resistentes a cortes.

Introduction

A espectrometria de massas com dessorção/ionização-imagem a laser assistida por matriz (MALDI-IMS) é um método poderoso que permite a atribuição de biomoléculas bidimensionais, fornece investigação não direcionada de compostos ionizáveis e determina sua distribuição espacial, especialmente em amostras biológicas 1,2. Há duas décadas, essa técnica tem possibilitado a detecção e identificação simultânea de lipídios, peptídeos, carboidratos, proteínas, outros metabólitos e moléculas sintéticas, como fármacos terapêuticos 3,4. O MALDI-IMS facilita a análise química em uma superfície de amostra de tecido sem extração, purificação, separação, rotulagem ou agentes corantes de amostras biológicas. No entanto, para o sucesso da análise, uma etapa fundamental nessa técnica é a preparação de amostras, particularmente em tecidos vegetais, que são especializados e modificados para órgãos complexos difundidos devido à aclimatização ambiental5.

Devido às propriedades físico-químicas inerentes ao tecido vegetal, há necessidade de um protocolo adaptado para atender às exigências da análise MALDI-IMS e preservar a forma original do tecido durantea preparação da secção6,7. No caso de amostras não convencionais, como sementes, os protocolosestabelecidos8 não são aplicáveis, pois esses tecidos apresentam paredes celulares rígidas e baixo teor de água, o que pode facilmente causar fragmentação dos cortes e levar à deslocalização do composto9.

Nosso grupo de pesquisa publicou dados experimentais sobre mapeamento molecular e um protocolo adaptado para análise MALDI-IMS de sementes de açaí (Euterpe oleracea Mart.) 10,11,12, que é um subproduto gerado em grandes quantidades durante a produção da polpa de açaí rentável 13. A ideia foi desenvolver um protocolo para mapeamento in situ de diferentes metabólitos em sementes de açaí, ajudando a sugerir possíveis usos para esse resíduo agrícola que ainda não estão sendo explorados comercialmente. No entanto, devido à resistência da semente de açaí, foi necessário adequar um protocolo para obter o corte adequado da amostra a partir da análise do MALDI-IMS.

Nesse contexto, a importância econômica da polpa de açaí tem motivado a crescente comercialização de outros frutos de palmeiras do gênero Euterpe com características sensoriais semelhantes. Os dois frutos emergentes de palmeiras que têm sido produzidos em escala industrial como alternativa ao açaí14,15 são E. precatoria (conhecido como açaí-do-amazonas), que cresce no sequeiro amazônico, e E. edulis (conhecido como juçara), que é típico da Mata Atlântica. No entanto, o consumo de açaí-do-amazonas e juçara leva ao mesmo acúmulo de sementes resistentes e não comestíveis que não são aproveitadas e não foram estudadas até o momento quanto à sua composição química detalhada.

Assim, demonstramos aqui que o protocolo previamente elaborado pode ser utilizado, com poucas adaptações, para analisar sementes de E. precatoria e E. edulis para mapeamento molecular pelo MALDI-IMS, mostrando-se uma poderosa ferramenta que pode ser utilizada para análise da composição desses recursos e pode auxiliar na determinação de seus potenciais usos biotecnológicos. Além disso, a descrição detalhada aqui fornecida pode ajudar outras pessoas com dificuldades semelhantes na preparação de materiais resistentes para a análise MALDI-IMS.

Protocol

As sementes de Euterpe precatoria foram gentilmente doadas pelo Instituto Nacional de Pesquisas da Amazônia (Manaus, Brasil), e as sementes de Euterpe edulis foram gentilmente doadas pelo Silo – Arte e Latitude Rural (Resende, Brasil) após o processo de despolpamento industrial. As sementes foram mantidas em caixas plásticas fechadas à temperatura ambiente. 1. Espectroscopia de massa de dessorção/ionização-imagem a laser assistida por matriz (MALDI-IMS)…

Representative Results

O protocolo elaborado possibilitou a análise MALDI-IMS de sementes de E. precatoria e E. edulis . Como resultado, foi possível confirmar o peso molecular e o grau de polimerização (PD) dos carboidratos como uma elucidação estrutural parcial. As informações moleculares fornecidas pela análise MALDI-IMS (Figura 1 e Figura 2) exibiram picos representando [M+K]+ adutos de oligômeros de hexose (Δ = 162 Da) sem …

Discussion

As plantas são compostas por tecidos especializados para funções bioquímicas específicas. Portanto, o protocolo de preparação de amostras para MALDI-IMS deve ser desenhado de acordo com vários tecidos vegetais com propriedades físico-químicas específicas, pois as amostras devem manter sua distribuição e abundância originais do analito para sinal de alta qualidade e resolução espacial8.

Antes da análise MALDI-IMS, a principal consideração é coletar e …

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi financiado pelo Instituto Serrapilheira (Serra-1708-15009) e pela Fundação Carlos Chagas Filho de Amparo à Pesquisa no Estado do Rio de Janeiro (FAPERJ-JCNE-SEI-260003/004754/2021). O Instituto Serrapilheira e o Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) concederam bolsas para Dr. Felipe Lopes Brum e Dr. Gabriel R. Martins (Programa de Capacitação Institucional/INT/MCTI). A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) é reconhecida pela concessão de bolsa de mestrado para o Sr. Davi M. M. C. da Silva. O Centro de Espectrometria de Massas de Biomoléculas (CEMBIO-UFRJ) é reconhecido pelos serviços prestados com as análises MALDI-IMS, e o Sr. Alan Menezes do Nascimento e o Centro de Caracterização em Nanotecnologia para Materiais e Catálise (CENANO-INT), financiados pelo processo MCTI/SISNANO/INT-CENANO-CNPQ nº 442604/2019, são agradecidos pela análise da composição elementar.

Materials

1 mL Gastight Syringe Model 1001 TLL, PTFE Luer Lock Hamilton Company 81320
2,5-Dihydroxybenzoic acid Sigma Aldrich Co, MO, USA 149357
APCI needle Bruker Daltonik, Bremen, Germany 602193
AxiDraw V3 xy motion platform Evil Mad Scientist, CA, USA 2510
Carbon double-sided conductive tape
Compass Data Analysis software  creation of mass list
Compressed air
copper double-faced adhesive tape 3M, USA 1182-3/4"X18YD
Cryostat CM 1860 UV Leica  Biosystems, Nussloch, Germany
Diamond Wafering Blade 15 HC
Everhart-Thornley detector
FlexImaging Bruker Daltonik, Bremen, Germany image acquisition
FTMS Processing Bruker Daltonik, Bremen, Germany data calibration
Gelatin from bovine skin Sigma Aldrich Co, MO, USA G9391
High Profile Microtome Blades Leica 818 Leica  Biosystems, Nussloch, Germany 0358 38926
indium tin oxide coated glass slide Bruker Daltonik, Bremen, Germany 8237001
Inkscape Inkscape Project c/o Software Freedom Conservancy, NY, USA
IsoMet 1000 precision cutter Buehler, Illinois, USA
Methanol J.T.Baker 9093-03
Mili-Q water 18.2 MΩ.cm
Oil vacuum pump
Optimal Cutting Temperature Compound Fisher HealthCare, Texas, USA 4585
Parafilm "M" Sealing Film Amcor HS234526B
Quanta 450 FEG FEI Co, Hillsboro, OR, USA
SCiLS Lab (Multi-vendor support) MS Software  Bruker Daltonik, Bremen, Germany
Software INCA Suite 4.14 V Oxford Instruments, Ableton, UK
Solarix 7T Bruker Daltonik, Bremen, Germany
Syringe pump kdScientific, MA, USA 78-9100K
Trifluoroacetic acid Sigma Aldrich Co, MO, USA 302031
X-Max spectrometer Oxford Instruments, Ableton, UK

Referanslar

  1. Buchberger, A. R., DeLaney, K., Johnson, J., Li, L. Mass spectrometry imaging: a review of emerging advancements and future insights. Analytical Chemistry. 90 (1), 240-265 (2018).
  2. Heeren, R. M. A. MALDITechniques in Mass Spectrometry Imaging. Encyclopedia of Spectroscopy and Spectrometry. , (2017).
  3. Shariatgorji, M., Svenningsson, P., Andrén, P. E. Mass spectrometry imaging, an emerging technology in neuropsychopharmacology. Neuropsychopharmacology. 39 (1), 34-49 (2014).
  4. Zaima, N., Hayasaka, T., Goto-Inoue, N., Setou, M. Matrix-assisted laser desorption/ionization imaging mass spectrometry. International Journal of Molecular Sciences. 11 (12), 5040-5055 (2010).
  5. Qin, L., et al. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in Situ analysis of endogenous molecules in plants. Phytochemical Analysis. 29 (4), 351-364 (2018).
  6. Bhandari, D. R., et al. High resolution mass spectrometry imaging of plant tissues: Towards a plant metabolite atlas. Analyst. 140 (22), 7696-7709 (2015).
  7. Boughton, B. A., Thinagaran, D., Sarabia, D., Bacic, A., Roessner, U. Mass spectrometry imaging for plant biology: a review. Phytochemistry Reviews. 15 (3), 445-488 (2016).
  8. Dong, Y., et al. Sample preparation for mass spectrometry imaging of plant tissues: a review. Frontiers in Plant Science. 7, 60 (2016).
  9. Zhang, Y. X., Zhang, Y., Shi, Y. P. A reliable and effective sample preparation protocol of MALDI-TOF-MSI for lipids imaging analysis in hard and dry cereals. Food Chemistry. 398, 133911 (2023).
  10. Brum, F. L., Martins, G. R., Mohana-Borges, R., da Silva, A. S. The acquisition of thin sections of açaí (Euterpe oleracea Mart.) seed with elevated potassium content for molecular mapping by mass spectrometry imaging. Rapid Communications in Mass Spectrometry. , e9474 (2023).
  11. Martins, G. R., et al. Chemical characterization, antioxidant and antimicrobial activities of açaí seed (Euterpe oleracea Mart.) extracts containing A- and B-type procyanidins. LWT. 132, 109830 (2020).
  12. Martins, G. R., et al. Phenolic profile and antioxidant properties in extracts of developing açaí (Euterpe oleracea Mart.) seeds. Journal of Agricultural and Food Chemistry. 70 (51), 16218-16228 (2022).
  13. Jorge, F. T. A., Silva, A. S. A., Brigagão, G. V. Açaí waste valorization via mannose and polyphenols production: techno-economic and environmental assessment. Biomass Conversion and Biorefinery. , (2022).
  14. Carvalho, L. M. J., Esmerino, A. A., Carvalho, J. L. V. Jussaí (Euterpe edulis): a review. Food Science and Technology. 42, (2022).
  15. Yamaguchi, K. K. d. L., Pereira, L. F. R., Lamarão, C. V., Lima, E. S., Veiga-Junior, V. F. d. Amazon acai: chemistry and biological activities: A Review. Food Chemistry. 179, 137-151 (2015).
  16. Wu, R., et al. Copper adhesive tape attached to the reverse side of a non-conductive glass slide to achieve protein MALDI-imaging in FFPE-tissue sections. Chemical Communications. 57 (82), 10707-10710 (2021).
  17. Dufresne, M., Patterson, N. H., Norris, J. L., Caprioli, R. M. Combining salt doping and matrix sublimation for high spatial resolution MALDI imaging mass spectrometry of neutral lipids. Analytical Chemistry. 91 (20), 12928-12934 (2019).
  18. Aguiar, M. O., de Mendonça, M. S. Morfo-anatomia da semente de Euterpe precatoria Mart (Palmae). Revista Brasileira de Sementes. 25, 37-42 (2003).
  19. Panza, V., Láinez, V., Maldonado, S. Seed structure and histochemistry in the palm Euterpe edulis. Botanical Journal of the Linnean Society. 145 (4), 445-453 (2004).
  20. Alves, V. M., et al. Provenient residues from industrial processing of açaí berries (Euterpe precatoria Mart): nutritional and antinutritional contents, phenolic profile, and pigments. Food Science and Technology. 42, (2022).
  21. Inada, K. O. P., et al. Screening of the chemical composition and occurring antioxidants in jabuticaba (Myrciaria jaboticaba) and jussara (Euterpe edulis) fruits and their fractions. Journal of FunctionalFoods. 17, 422-433 (2015).
  22. Monteiro, A. F., Miguez, I. S., Silva, J. P. R. B., Silva, A. S. High concentration and yield production of mannose from açaí (Euterpe oleracea Mart.) seeds via mannanase-catalyzed hydrolysis. Scientific Reports. 9 (1), 10939 (2019).

Play Video

Bu Makaleden Alıntı Yapın
Martins, G. R., Brum, F. L., da Silva, D. M. M. C., Barbosa, L. C., Mohana-Borges, R., da Silva, A. S. Preparation of Hard Palm Seeds for Matrix-Assisted Laser Desorption/Ionization-Imaging Mass Spectrometry Analysis. J. Vis. Exp. (196), e65650, doi:10.3791/65650 (2023).

View Video