Özet

一种稳定建立的溶血磷脂酰胆碱诱导的小鼠局灶性脱髓鞘模型的两点注射

Published: May 11, 2022
doi:

Özet

本方案描述了 通过 立体定位框架两点注射溶血磷脂酰胆碱以在小鼠中产生稳定且可重复的脱髓鞘模型。

Abstract

受体介导的溶血磷脂信号传导有助于各种神经系统疾病的病理生理学,尤其是多发性硬化症(MS)。溶血磷脂酰胆碱(LPC)是一种与炎症相关的内源性溶血磷脂,可诱发快速损伤,对髓鞘脂质有毒性,导致局灶性脱髓鞘。本文给出了立体定向两点LPC注射的详细方案,可直接导致严重脱髓鞘,并通过外科手术在小鼠中快速稳定地复制实验性脱髓鞘损伤。因此,该模型与脱髓鞘疾病,特别是MS高度相关,并且可以促进相关的临床相关研究的进展。此外,使用免疫荧光和Luxol快速蓝色染色方法来描述注射LPC的小鼠胼胝体中脱髓鞘的时间过程。此外,该行为方法用于评估建模后小鼠的认知功能。总体而言, 通过 立体定位框架两点注射溶血磷脂酰胆碱是一种稳定且可重复的方法,可在小鼠中生成脱髓鞘模型以进行进一步研究。

Introduction

受体介导的溶血磷脂信号传导涉及几乎所有器官系统的不同生理过程1.在中枢神经系统(CNS)中,这种信号传导在自身免疫性神经系统疾病(如多发性硬化症(MS))的发病机制中起着关键作用。多发性硬化症是一种慢性免疫介导的疾病,其特征是病理性脱髓鞘和炎症反应,导致神经系统功能障碍和认知障碍23。在疾病早期持续复发和缓解后,大多数患者最终进展到继发性进展阶段,这可能对大脑造成不可逆转的损害并导致残疾4。据信,继发性进展病程的病理标志是由炎症性病变引起的脱髓鞘斑块5。现有的MS治疗方法可以显着降低复发的风险。然而,对于进行性MS6引起的长期脱髓鞘损伤,仍然没有有效的治疗方法。因此,需要一个稳定建立且易于重现的模型来研究专注于白质变性的临床前治疗。

脱髓鞘和髓鞘再生是发展为多发性硬化症的两个主要病理过程。脱髓鞘是由促炎表型7的小胶质细胞诱导的轴突周围髓鞘的丧失,它导致神经冲动的缓慢传导并导致神经元和神经系统疾病的丧失。髓鞘再生是由少突胶质细胞介导的内源性修复反应,其中疾病可能导致神经变性和认知障碍8。炎症反应对整个过程至关重要,影响髓鞘损伤和修复的程度。

因此,持续的炎症性脱髓鞘的稳定动物模型对于进一步探索MS的治疗策略具有重要意义,由于MS的复杂性,已经建立了各种类型的动物模型来模拟 体内脱髓鞘病变,包括实验性自身免疫性脑脊髓炎(EAE),毒性脱髓鞘模型,铜绿素(CPZ)和溶酶磷脂酰胆碱(LPC)9.LPC是一种与炎症相关的内源性溶血磷脂,可诱发快速损伤,对髓鞘脂质有毒性,导致局灶性脱髓鞘。根据以前的报告和研究1011,提供了具有一些修改的两点注射的详细方案。通常,经典的单点LPC注射模型仅在注射部位产生局部脱髓鞘,并且通常伴有自发性髓鞘再生1213。然而,两点注射LPC模型可以证明LPC可以直接诱导小鼠胼胝体脱髓鞘,并导致更持久的脱髓鞘,髓鞘再生很少。

Protocol

所有动物程序均经中国华中科技大学同济医学院动物护理委员会批准。本研究使用成年C57BL / 6雄性和雌性小鼠(野生型,WT;20-25g;8-10周龄)。小鼠是从商业来源获得的(见 材料表)。将小鼠饲养在特定的无病原体(SPF)动物设施中 ,随意提供水和食物。在22 °C温度和55%~60%相对湿度的标准条件下,将它们保持在12 h交替的明暗循环中。 1. 液相色谱溶液制…

Representative Results

LPC的两点注射导致更持久的脱髓鞘LPC主要导致快速损伤,对髓鞘有毒性,轴突完整性15断裂。注射当天被视为第0天。将小鼠保存10-28天(10 dpi和28 dpi)。使用卢克索快速蓝(LFB)染色10来评估这些时间点小鼠脱髓鞘的区域。在两点注射模型中,与假组相比,10 dpi上存在显着的脱髓鞘,表明局部注射LPC可以成功地脱髓胼胝体。在28 dpi处仍然存在相对…

Discussion

MS是中枢神经系统的慢性脱髓鞘疾病,是年轻人神经系统功能障碍的最常见原因之一20.临床上,大约60%-80%的MS患者在发展为继发性进行性MS21,22之前经历复发和缓解的周期,并且最终导致累积的运动障碍和认知缺陷23。目前,没有一个单一的实验模型涵盖了该疾病24的各种临床、病理或免疫学特征。?…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

本研究由国家自然科学基金(基金资助:82071380、81873743)资助。

Materials

L-α-Lysophosphatidylcholine from egg yolk Sigma-Aldrich L4129-25MG
32 gauge Needle HAMILTON 7762-05
10 μl syringe HAMILTON 80014
high speed skull drill strong,korea strong204
drill Hager & Meisinger, Germany  REF 500 104 001 001 005
Matrx Animal Aneathesia Ventilator MIDMARK VMR
Portable Stereotaxic Instrument for Mouse Reward 68507
Micro syringe Reward KDS LEGATO 130
Isoflurane  VETEASY
Paraformaldehyde Servicebio G1101
Phosphate buffer BOSTER PYG0021
LuxoL fast bLue Servicebio G1030-100ML
Suture FUSUNPHARMA 20152021225
Brain mold Reward 68707
Electron microscope fixative Servicebio G1102-100ML
Neutral red (C.I. 50040), for microscopy Certistain Sigma-Aldrich 1.01376
Anti-Myelin Basic Protein Antibody  Millipore #AB5864
Anti-GST-P pAb MBL #311
Ki-67 Monoclonal Antibody (SolA15) Thermo Fisher Scientific 14-5698-95
Beta Actin Monoclonal Antibody Proteintech 66009-1-Ig 
Myelin Basic Protein Polyclonal Antibody Proteintech 10458-1-AP
OLIG2 Polyclonal Antibody Proteintech 13999-1-AP
Alexa Fluor 488 AffiniPure Donkey anti-Rabbit IgG (H+L) YEASEN 34206ES60
Alexa Fluor 594 AffiniPure Donkey Anti-Rat IgG (H+L)  YEASEN 34412ES60
Alexa Fluor 594 AffiniPure Donkey Anti-Rabbit IgG (H+L)  YEASEN 34212ES60
HRP Goat Anti-Rabbit IgG (H+L) abclonal AS014
HRP Goat Anti-Mouse IgG (H+L)  abclonal AS003
Adult C57BL/6 male and female mice Hunan SJA Laboratory Animal Co. Ltd

Referanslar

  1. Gaire, B. P., Choi, J. W. Critical roles of lysophospholipid receptors in activation of neuroglia and their neuroinflammatory responses. International Journal of Molecular Sciences. 22 (15), 7864 (2021).
  2. Compston, A., Coles, A. Multiple sclerosis. Lancet. 372 (9648), 1502-1517 (2008).
  3. Dobson, R., Giovannoni, G. Multiple sclerosis – a review. European Journal of Neurology. 26 (1), 27-40 (2019).
  4. Mahad, D. H., Trapp, B. D., Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. The Lancet Neurology. 14 (2), 183-193 (2015).
  5. Filippi, M., et al. Multiple sclerosis. Nature Reviews Disease Primers. 4 (1), 43 (2018).
  6. Villoslada, P., Steinman, L. New targets and therapeutics for neuroprotection, remyelination and repair in multiple sclerosis. Expert Opinion on Investigational Drugs. 29 (5), 443-459 (2020).
  7. Lassmann, H. Multiple sclerosis pathology. Cold Spring Harbor Perspectives in Medicine. 8 (3), 028936 (2018).
  8. Franklin, R. J., Ffrench-Constant, C. Remyelination in the CNS: From biology to therapy. Nature Reviews Neuroscience. 9 (11), 839-855 (2008).
  9. Gentile, A., et al. Immunomodulatory effects of exercise in experimental multiple sclerosis. Frontiers in Immunology. 10, 2197 (2019).
  10. Chen, M., et al. Deficiency of microglial Hv1 channel is associated with activation of autophagic pathway and ROS production in LPC-induced demyelination mouse model. Journal of Neuroinflammation. 17 (1), 333 (2020).
  11. Luo, Q., et al. A stable and easily reproducible model of focal white matter demyelination. Journal of Neuroscience Methods. 307, 230-239 (2018).
  12. Blakemore, W. F., Franklin, R. J. Remyelination in experimental models of toxin-induced demyelination. Current Topics in Microbiology and Immunology. 318, 193-212 (2008).
  13. Degaonkar, M. N., Raghunathan, P., Jayasundar, R., Jagannathan, N. R. Determination of relaxation characteristics during preacute stage of lysophosphatidyl choline-induced demyelinating lesion in rat brain: An animal model of multiple sclerosis. Magnetic Resonance Imaging. 23 (1), 69-73 (2005).
  14. Baydyuk, M., et al. Tracking the evolution of CNS remyelinating lesion in mice with neutral red dye. Proceedings of the National Academy of Sciences of the United States of America. 116 (28), 14290-14299 (2019).
  15. Plemel, J. R., et al. Mechanisms of lysophosphatidylcholine-induced demyelination: A primary lipid disrupting myelinopathy. Glia. 66 (2), 327-347 (2018).
  16. Nave, K. A. Myelination and support of axonal integrity by glia. Nature. 468 (7321), 244-252 (2010).
  17. Liu, Z., et al. Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms. Gelişim Biyolojisi. 302 (2), 683-693 (2007).
  18. Kassis, H., et al. Histone deacetylase expression in white matter oligodendrocytes after stroke. Neurochemistry International. 77, 17-23 (2014).
  19. Vorhees, C. V., Williams, M. T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nature Protocols. 1 (2), 848-858 (2006).
  20. Merkler, D., Ernsting, T., Kerschensteiner, M., Bruck, W., Stadelmann, C. A new focal EAE model of cortical demyelination: multiple sclerosis-like lesions with rapid resolution of inflammation and extensive remyelination. Brain. 129, 1972-1983 (2006).
  21. Karussis, D. The diagnosis of multiple sclerosis and the various related demyelinating syndromes: A critical review. Journal of Autoimmunity. 48-49, 134-142 (2014).
  22. Kamma, E., Lasisi, W., Libner, C., Ng, H. S., Plemel, J. R. Central nervous system macrophages in progressive multiple sclerosis: Relationship to neurodegeneration and therapeutics. Journal of Neuroinflammation. 19 (1), 45 (2022).
  23. Kutzelnigg, A., et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 128, 2705-2712 (2005).
  24. Lassmann, H., Bradl, M. Multiple sclerosis: Experimental models and reality). Acta Neuropathologica. 133 (2), 223-244 (2017).
  25. Lamport, A. C., Chedrawe, M., Nichols, M., Robertson, G. S. Experimental autoimmune encephalomyelitis accelerates remyelination after lysophosphatidylcholine-induced demyelination in the corpus callosum. Journal of Neuroimmunology. 334, 576995 (2019).
  26. Torkildsen, O., Brunborg, L. A., Myhr, K. M., Bo, L. The cuprizone model for demyelination. Acta Neurologica Scandinavica. Supplementum. 188, 72-76 (2008).
  27. Zhan, J., et al. The cuprizone model: Dos and do nots. Cells. 9 (4), 843 (2020).
  28. Torre-Fuentes, L., et al. Experimental models of demyelination and remyelination. Neurologia (Barcelona, Spain). 35 (1), 32-39 (2020).
  29. Merkler, D., et al. Myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in the common marmoset reflects the immunopathology of pattern II multiple sclerosis lesions. Multiple Sclerosis Journal. 12 (4), 369-374 (2006).
  30. Ucal, M., et al. Widespread cortical demyelination of both hemispheres can be induced by injection of pro-inflammatory cytokines via an implanted catheter in the cortex of MOG-immunized rats. Experimental Neurology. 294, 32-44 (2017).

Play Video

Bu Makaleden Alıntı Yapın
Pang, X., Chen, M., Chu, Y., Tang, Y., Qin, C., Tian, D. A Stably Established Two-Point Injection of Lysophosphatidylcholine-Induced Focal Demyelination Model in Mice. J. Vis. Exp. (183), e64059, doi:10.3791/64059 (2022).

View Video