土壌密度分別は、土壌有機物を安定化メカニズム、化学的性質、および回転時間が異なる異なるプールに分離します。特定の密度を有するポリタングステン酸ナトリウム溶液は、遊離粒子状有機物と鉱物関連有機物の分離を可能にし、管理および気候変動に対する土壌応答を記述するのに適した有機物画分をもたらす。
土壌有機物(SOM)は、遊離の部分的に分解された植物成分から、土壌凝集体に保持されているより微生物的に変化した化合物、反応性土壌ミネラルと強い関連を持つ高度に処理された微生物副産物まで、さまざまな化合物の複雑な混合物です。土壌科学者は、土壌を簡単に測定でき、土壌炭素(C)モデリングに役立つ画分に土壌を分離する方法を見つけるのに苦労してきました。密度に基づいて土壌を分画することがますます使用されており、SOMと異なる鉱物との関連性の程度に基づいて実行が容易でCプールが得られます。したがって、土壌密度分別は、SOMの特性評価とSOM安定化メカニズムの特定に役立ちます。ただし、報告されている土壌密度分別プロトコルは大きく異なり、さまざまな研究や生態系の結果を比較することは困難です。ここでは、粒子状有機物と鉱物関連有機物を分離する堅牢な密度分別手順について説明し、土壌を2つ、3つ、またはそれ以上の密度画分に分離することの利点と欠点について説明します。そのような画分は、それらの化学的およびミネラル組成、代謝回転時間、ならびに微生物処理の程度、ならびにミネラル安定化の程度においてしばしば異なる。
土壌は陸生炭素(C)の最大の貯蔵庫であり、上部1mに1,500Pg以上のCを含み、世界のより深いレベルではそのほぼ2倍の量であるため、土壌には植物バイオマスと大気を合わせたよりも多くのCが含まれていることを意味します1。土壌有機物(SOM)は、水と土壌栄養素を保持し、植物の生産性と陸域生態系の機能に不可欠です。土壌の健康と農業生産性にとって適切なSOMストックの重要性が世界的に認識されているにもかかわらず、持続不可能な森林と農業の管理、景観の変化、気候温暖化により、土壌Cストックが大幅に枯渇しています2,3。土壌の健康を回復し、自然気候ソリューションの主要なプレーヤーとして土壌Cの保持を使用することへの関心の高まりは、多様な環境における土壌Cの隔離と安定化を制御する要因を理解するための努力につながりました4,5。
土壌有機物(SOM)は、遊離の部分的に分解された植物成分から、土壌凝集体に保持されるより微生物的に変化した化合物(ここでは、別々のユニットまたはアイテムの組み合わせによって形成される材料として定義)から、反応性土壌ミネラルと強い関連を持つ高度に処理された微生物副産物までの範囲に及ぶさまざまな化合物の複雑な混合物です6.SOM内の個々の化合物の完全なスイートを特定することが現実的でない場合、研究者はしばしば、物理的現実として存在し、回転率、一般的な化学組成、および土壌のミネラル成分による安定化の程度によって異なるCの少数の機能プールを特定することに焦点を当てます1、7.プールを批判的に解釈しモデル化するためには、分離されたプールの数が少なく、理論的なものではなく直接測定可能であり、組成と反応性に明確な違いを示すことが不可欠です8。
土壌Cの意味のあるプールを分離するために、化学的および物理的の両方の多くの異なる技術が採用されており、これらはvon Lützow et al.9およびPoeplau et al.10によってよく要約されています。化学的抽出技術は、結晶性の低いFeおよびAl11のいずれかに関連するCなどの特定のプールを単離することを目的としています。有機溶媒は、脂質12などの特定の化合物を抽出するために使用されており、SOMの加水分解または酸化のいずれかがC13,14の不安定なプールの尺度として使用されてきた。ただし、これらの抽出方法のいずれも、Cのすべてのプールを測定可能またはモデル化可能な画分に分類しません。土壌の物理的分別は、すべての土壌Cをサイズに基づいてプールに分類し、植物の破片の分解が断片化とますます小さな粒子をもたらすと仮定します。サイズだけでは、鉱物関連のSOM15から遊離植物の残骸を分離することはできませんが、これら2つのプールを定量化することは、形成と代謝回転における共通の空間的、物理的、および生物地球化学的違いによる土壌C安定化を理解するために重要です16。
密度に基づく土壌Cの分画はますます使用されており、実行が容易であり、異なる鉱物との関連度に基づいてCの異なるプールを識別する17,18,19;したがって、土壌密度分画は、異なる土壌C安定化メカニズムの解明に役立ちます。分別される土壌の主な要件は、有機物と鉱物粒子を完全に分散させる能力です。分散すると、ミネラルを比較的含まない分解有機物は~1.85 g / cm 3より軽い溶液に浮遊しますが、ミネラルは通常2〜4.5 g / cm 3の範囲になりますが、酸化鉄の密度は最大5.3 g / cm3です。軽いまたは遊離粒子画分は、ターンオーバー時間が短くなる傾向があり(木炭による重大な汚染がない限り)、栽培やその他の障害に非常に敏感であることが示されています。重い(>1.85 g / cm3)またはミネラル関連画分は、有機分子が反応性鉱物表面と結合するときに得られる微生物媒介分解に対する耐性のために、ターンオーバー時間が長くなることがよくあります。しかしながら、重質画分は飽和する(すなわち、ミネラル錯化能力の上限に達する)可能性があるが、軽質画分は理論的にはほぼ無期限に蓄積することができる。したがって、鉱物関連有機物と粒子状有機物のプール内の有機物の物理的分布を理解することは、効率的な炭素隔離のためにどの生態系を管理できるか、そしてさまざまなシステムが気候変動と人為的撹乱の変化パターンにどのように反応するかを解明するのに役立ちます20。
過去10年間で、さまざまな密度のポリタングステン酸ナトリウム溶液を使用した密度分画の使用が大幅に増加しましたが、技術とプロトコルは大きく異なり、さまざまな研究やさまざまな生態系の結果を比較するのは困難です。1.85 g / cm 3の密度は、ミネラル関連有機物(MAOM)17の包含を最小限に抑えて最大量の自由光画分を回収することが示されていますが、多くの研究では1.65〜2.0 g / cm3の範囲の密度を使用しています。ほとんどの研究では、土壌を2つのプール(軽フラクションとヘビーフラクション、以下LFとHF)に分画していますが、他の研究では、複数の密度を使用して、関連するミネラル、ミネラルと有機コーティングの相対比率、または凝集の程度(たとえば、 Sollins et al.17, Sollins et al.18, Hatton et al.21, Lajtha et al.22, Yeasmin et al.23, Wagai et al.24, Volk et al.25)。さらに、サイズと密度の両方の分離を組み合わせたより複雑な分画手順が提案されており、その結果、プールの数が多くなりますが(例:Yonekura et al.26、Virto et al.27、Moni et al.15、Poeplau et al.10)、方法論とプールサイズの両方においてエラーの余地も大きくなります。さらに、著者らはまた、鉱物表面から凝集体およびMAOMを分散させるために、様々な強度および時間で超音波処理を使用した28,29,30。
ここでは、最初に土壌炭素の2つのユニークなプール(LFとHF、またはPOMとMAOM)を特定する堅牢な密度分別手順について説明し、HFプールをさらに鉱物学、有機コーティングの程度、または凝集に基づいて異なる追加の画分に分離するための技術と議論の両方を提供します。ここで同定された画分は、それらの化学組成、回転時間、微生物処理の程度、およびミネラル安定化の程度において異なることが示されている18,19。
次の手順では、特定の密度の溶液に既知量の土壌を混合することにより、バルク土壌を粒子状有機物(POM)と鉱物関連有機物(MAOM)に分離します。手順の有効性は、初期土壌サンプル質量およびC含有量に対する土壌質量および炭素の複合回収によって測定される。ポリタングステン酸ナトリウム(SPT)を脱イオン水に溶解することにより、高密度溶液が得られます。土壌は最初に高密度SPT溶液と混合され、攪拌されて土壌凝集体を完全に混合および分散させる。次に、遠心分離を使用して、溶液中に浮遊(軽フラクション)または沈む(重いフラクション)のいずれかの土壌材料を分離します。混合、分離、回収、および洗浄のステップが複数回繰り返され、材料からのSPTの除去とともに、軽質画分と重質画分の分離が保証されます。最後に、土壌画分を乾燥させ、秤量し、C含有量について分析します。分画された材料は、後続の手順および分析に使用できます。
土壌密度分画プロトコル全体を通して、土壌画分の分離と分析のエラーを減らすために綿密に監視しなければならないいくつかの特定の手順があります。土壌密度分画手順の重要なステップは、SPT溶液の密度を繰り返し検証することです。土壌サンプル中の水分はSPT溶液を希釈することが多く、SPTの密度が低下します。したがって、研究者は、遠心分離後に軽溶液と重溶液の完全な分離が達?…
The authors have nothing to disclose.
この作業のために、国立科学財団助成金DEB-1257032からKLに、DEB-1440409からHJアンドリュース長期生態学的研究プログラムに支援が提供されました。
Aspirator/vacuum tubing 1/4 x 1/2" | Kimble | 10847-216 | |
Conical polypropylene centrifuge tube, 250mL | Thermo Scientific | 376814 | |
Conical rubber gasket for filtering flasks | DWK Life Sciences | 292020001 | |
Double flat ended stainless steel spatula/scraper | Fisher Scientific | 14-373-25A | |
Glass fiber filter, grade GF/F, 110 mm | Whatman | WHA1825110 | |
Glass mason jar, 16 oz | Ball Corporation | 500 ml beaker or glass weigh dish are also suitable | |
Polypropylene conical bottle adapter, 250mL | Beckman Coulter | 369385 | |
Porcelain buchner funnel, 90mm | FisherBrand | FB966F | |
Reciprocating shaker, 2-speed | Eberbach | E6000.00 | |
Sidearm flask, 1000mL | VWR | 89000-386 | |
Sodium Polytungstate, crystalline | Sometu | SPT-0 or SPT-1, see Discussion for SPT choice | Shipping via FedEx from Germany |
Swinging bucket centrifuge | Beckman Coulter | 3362020 |