Ce protocole décrit la détection de la migration des cellules souches squelettiques périostées médiées par CCL5 en temps réel à l’aide de la microscopie intravitale d’animaux vivants.
Les cellules souches squelettiques périostées (P-SSC) sont essentielles à l’entretien et à la réparation des os tout au long de leur vie, ce qui en fait un point de mire idéal pour le développement de thérapies visant à améliorer la guérison des fractures. Les cellules périostées migrent rapidement vers une blessure pour fournir de nouveaux chondrocytes et ostéoblastes pour la guérison des fractures. Traditionnellement, l’efficacité d’une cytokine pour induire la migration cellulaire n’a été réalisée in vitro qu’en effectuant un test transwell ou scratch. Avec les progrès de la microscopie intravitale utilisant l’excitation multiphotonique, il a été récemment découvert que 1) les P-SSC expriment le gène migrateur CCR5 et 2) le traitement avec le ligand CCR5 connu sous le nom de CCL5 améliore la cicatrisation des fractures et la migration des P-SSC en réponse à CCL5. Ces résultats ont été saisis en temps réel. Décrit ici est un protocole pour visualiser la migration de la P-SSC de la niche des cellules souches squelettiques (SSC) de suture calvariaire vers une blessure après un traitement par CCL5. Le protocole détaille la construction d’une fixation de souris et d’un support d’imagerie, la préparation chirurgicale de la calvaire de la souris, l’induction d’un défaut de calvaire et l’acquisition de l’imagerie en accéléré.
La réparation des fractures est un processus dynamique et multicellulaire qui se distingue du développement et du remodelage du squelette embryonnaire. Au cours de ce processus, l’induction de signaux de blessure provenant de tissus endommagés est suivie du recrutement, de la prolifération et de la différenciation subséquente des cellules souches/progénitrices squelettiques, qui sont toutes essentielles à la stabilité globale et à la fixation des fractures1. En particulier, les premiers stades de la guérison des fractures nécessitent la formation de callosités molles, qui est principalement attribuée aux cellules résidentes périostées2. Lorsque les os sont blessés, un sous-ensemble de cellules périostées réagit rapidement et contribue à de nouveaux intermédiaires cartilagineux et ostéoblastes dans le callosité3, impliquant la présence d’une population distincte de cellules souches squelettiques / progénitrices dans le périoste. Par conséquent, l’identification et la caractérisation fonctionnelle des cellules souches squelettiques (CSE) résidentes du périoste constituent une approche thérapeutique prometteuse pour les maladies osseuses dégénératives et les défauts osseux4.
On pense que les SSC résident dans plusieurs emplacements tissulaires, y compris la moelle osseuse. À l’instar de la moelle osseuse, des SSC ostéogéniques/chondrogènes ont également été identifiés dans le périoste4,5,6. Ces SSC périostés (P-SSC) peuvent être marqués avec des marqueurs de lignée mésenchymateuse précoce (c.-à-d. Prx1-Cre5, Ctsk-Cre7 et Axin2-CreER8) au cours du développement osseux du fœtus4,7,8,9,10. Une limitation importante de ces modèles de traçage de lignée génétique unique est qu’il existe une hétérogénéité substantielle au sein des populations cellulaires marquées. De plus, ils ne peuvent pas distinguer les SSC étiquetés de leur progéniture in vivo. Pour remédier à cette limitation, nous avons récemment développé une souris rapporteur double (Mx1-Cre+Rosa26-Tomato+α SMA-GFP+) pour visualiser distinctement les P-SSC des SSC de moelle osseuse (BM-SSCs)11. Avec ce modèle, il a été déterminé que les P-SSC sont marqués par un double marquage Mx1+αSMA+, tandis que les cellules Mx1+ plus différenciées résident dans la moelle osseuse, les surfaces endostéale et périostéale, ainsi que dans les os corticaux et trabéculaires11,12.
De multiples cytokines et facteurs de croissance sont connus pour réguler le remodelage et la réparation des os et ont été testés pour l’amélioration de la réparation squelettique dans les défauts critiques du segment1,13. Cependant, en raison de la complexité cellulaire des modèles de blessures générés par la perturbation de la barrière physique du compartiment osseux, les effets directs de ces molécules sur la migration et l’activation endogènes de P-SSC pendant la guérison ne sont pas clairs. Les caractéristiques fonctionnelles et la dynamique migratoire des SSC sont souvent évaluées in vitro en effectuant un test de transpuit ou de grattage, en combinaison avec des cytokines ou des facteurs de croissance connus pour induire la migration dans d’autres populations cellulaires. Ainsi, l’interprétation des résultats de ces expériences in vitro pour une application dans leurs systèmes in vivo correspondants est difficile. À l’heure actuelle, l’évaluation in vivo de la migration des cellules souches/progénitrices squelettiques n’est généralement pas observée en temps réel; il est plutôt mesuré à des points temporels fixes après la fracture5,7,14,15,16.
Une limite de cette méthode est que la migration n’est pas évaluée au niveau d’une seule cellule; il est plutôt mesuré par des changements dans les populations cellulaires. Grâce aux progrès récents de la microscopie intravitale d’animaux vivants et à la génération de souris rapporteures supplémentaires, le suivi in vivo de cellules individuelles est désormais possible. En utilisant la microscopie intravitale d’animaux vivants, nous avons observé la migration distincte des P-SSC de la niche de suture calvariaire vers une lésion osseuse dans les 24 à 48 heures suivant la blessure chez les souris Mx1 / Tomato / αSMA-GFP.
CCL5/CCR5 a récemment été identifié comme un mécanisme de réglementation influençant le recrutement et l’activation des P-SSC au cours de l’intervention précoce en cas de blessure. Fait intéressant, il n’y a pas eu de détection en temps réel d’une migration importante de P-SSC en réponse à une blessure. Cependant, le traitement d’une blessure avec CCL5 produit une migration robuste et directionnelle distincte des P-SSC, qui peut être capturée en temps réel. Par conséquent, l’objectif de ce protocole est de fournir une méthodologie détaillée pour enregistrer la migration in vivo des P-SSC en temps réel après le traitement par CCL5.
Au cours de la cicatrisation osseuse, les cellules périostées sont la principale source de chondrocytes et d’ostéoblastes nouvellement différenciés dans un callosité de blessure3. À l’instar de la moelle osseuse, des SSC ostéogéniques/chondrogènes ont également été identifiés dans le périoste4,5,6. L’évaluation des caractéristiques fonctionnelles endogènes du P-SSC est techniquemen…
The authors have nothing to disclose.
Ce travail a été soutenu par le Bone Disease Program of Texas Award, le Caroline Wiess Law Fund Award et le NIAMS des National Institutes of Health sous les numéros de prix R01 AR072018, R21 AG064345, R01 CA221946 à D.P. Nous remercions M.E. Dickinson et T.J. Vadakkan dans le BCM Optical Imaging and Vital Microscopy Core et le BCM Advanced Technology Cores avec le financement des NIH (AI036211, CA125123 et DK056338).
.
½” optical post | ThorLabs | TR2 | For imaging mount |
1 mL syringe | BD | 309659 | |
27G needle | BD PercisionGlide | 305111 | |
29G insulin syringe | McKesson | 102-SN05C905P | |
50 mL conicol tube | Falcon | 352098 | For mouse restraint |
Adjustable angle plate | Renishaw | R-PCA-5023-50-20 | For imaging mount |
Alcohol wipes | Coviden | 6818 | |
betadine surgical scrub | Henry Schen | 67618-151-16 | |
Buprenorphine SR-LAB | ZooPharm | 1mg/mL Sustained Release | |
Combo III | Obtained from staff veterinarian | N/A | 37.6 mg/mL Ketamine; 1.9 mg/mL Xylazine; 0.37 mg/mL Acepronazine |
Coverslip | Fisher | 12-545-87 | 24 x 40 premium superslip |
Fine tip forcepts | FST | 11254-20 | |
Ketamine | KetaVed | 50989-161-06 | 100 mg/mL |
Leica TCS SP8MP with DM6000CFS | Leica Microsystems | N/A | |
Matrigel | R & D Systems | 344500101 | |
Medical tape | McKesson | 100199 | 3" x 10 yds (7.6 cm x 9.1 m) |
Methocellulose | Electron Microscopy Sciences | 19560 | |
Microdissection scissors | FST | 1456-12 | |
Motorized stage | Anaheim automation | N/A | |
Needle holder | FST | 12500-12 | |
Nonabsorbable sutures | McKesson | S913BX | monofilament nylon 5-0 nonabsorbable sutures with attached C-1 reverse cutting needle |
Opthalmic ointment | Rugby | 0536-1086-91 | |
RANTES | Biolegend | 594202 | 10 µg/50 µL |
Right-angle clamp for ½” post, 3/16” Hex | ThorLabs | RA90 | For imaging mount |
Spring-loaded 3/16” Hex-locking ¼” thumbscrew | ThorLabs | TS25H | For imaging mount |
Sterile cotton swabs | Henry Schen | 100-9249 | |
Sterile DPBS (1x) | Corning | 21-030-CV | |
Sterile drapes | McKessen | 25-517 | |
Surgical gloves | McKessen | 3158VA | |
Triple antibiotic ointment | Taro Pharmaceuticals U.s.a., Inc. | 51672-2120-2 | |
Vacutainer blood collection set | BD | REF 367298 | 25G butterfly needle infusion set with 12" tubing |