Here, we characterize protein structure and interaction sites in living cells using a protein footprinting technique termed in-cell fast photochemical oxidation of proteins (IC-FPOP).
Fast photochemical oxidation of proteins (FPOP) is a hydroxyl radical protein footprinting method used to characterize protein structure and interactions. FPOP uses a 248 nm excimer laser to photolyze hydrogen peroxide producing hydroxyl radicals. These radicals oxidatively modify solvent exposed side chains of 19 of the 20 amino acids. Recently, this method has been used in live cells (IC-FPOP) to study protein interactions in their native environment. The study of proteins in cells accounts for intermolecular crowding and various protein interactions that are disrupted for in vitro studies. A custom single cell flow system was designed to reduce cell aggregation and clogging during IC-FPOP. This flow system focuses the cells past the excimer laser individually, thus ensuring consistent irradiation. By comparing the extent of oxidation produced from FPOP to the protein's solvent accessibility calculated from a crystal structure, IC-FPOP can accurately probe the solvent accessible side chains of proteins.
Hydroxyl radical protein footprinting (HRPF) is a method that probes the solvent accessibility of a protein through covalent modifications produced from hydroxyl radicals. When protein structure or protein interactions change, it will alter the solvent exposure of amino acids, thus altering the extent of modification of residues. With HRPF, protein interactions1,2,3 and protein conformational changes4,5,6 have successfully been interrogated in vitro. There are several methods that generate hydroxyl radicals for HRPF experiments, one being fast photochemical oxidation of proteins (FPOP). FPOP was developed by Hambly and Gross in 2005 and utilizes a 248 nm excimer laser to produce hydroxyl radicals through the photolysis of hydrogen peroxide (H2O2)7.
Recently, Espino et al. extended the use of FPOP to probe protein structure in live cells, a method termed in-cell FPOP (IC-FPOP)8. In contrast to in vitro studies, studying proteins in cells accounts for molecular crowding along with various protein interactions that could potentially influence structure. Additionally, it presents the advantage of providing a snapshot of the full proteome potentially providing structural information of numerous systems at once to perform proteome wide structural biology. Furthermore, this technique is ideal for proteins that are difficult to study in vitro, like membrane proteins.
Initial studies of IC-FPOP successfully probed 105 proteins ranging in protein abundance and cellular localization. To improve the IC-FPOP method, Rinas et al. developed a microflow system for single cell flow9. The enhancement of the original flow system limits cell aggregation and increases the available H2O2 available for irradiation. In the initial flow system, cells clumping in the silica tubing resulted in clogs and uneven irradiation. The incorporation of two streams of a sheath buffer hydrodynamically focuses the cells, allowing them to flow individually past the laser. The incorporation of a separate syringe for the H2O2 enables more controlled and optimizable exposure time allowing higher H2O2 concentrations without adverse effects. Also, limiting the incubation time limits the breakdown of H2O2 by endogenous catalase. By incorporating this new flow system, the detected number of proteins with an FPOP modification increased 13-fold, thus expanding the capabilities of this method to probe a multitude of proteins in living cells. In this protocol a general IC-FPOP experiment is described focusing on the assembly of the IC-FPOP flow system.
1. Set up IC-FPOP flow system
2. Make quench and H2O2
3. Collect cells
4. Performing IC-FPOP
5. Digest
6. Liquid Chromatography-Tandem Mass Spectrometry
7. Data Processing
IC-FPOP is a footprinting method to interrogate protein interactions in live cells. In the IC-FPOP flow system, the H2O2 exposure time is limited to roughly 3 s, warranting higher H2O2 concentrations without detrimental consequences for the cells. The flow system also incorporates two streams of sheath buffer, which hydrodynamically focuses the cells to the center of the tubing producing a single flow of cells to be uniformly irradiated (Figure 5)9. Fluorescence imaging of orthogonal YZ stacked images (Figure 5A) show a clear separation of the sheath buffer (containing a FITC fluorophore) from the cell solution (containing a TMRM fluorophore). To emphasize this separation, Figure 5B and Figure 5C show three-dimensional average heat maps of either the sheath buffer solution or cell solution, illustrating minimal mixing of the two solutions.
The use of the single cell flow system increases the number of oxidatively modified proteins by 13-fold (Figure 6A)9. In this method, proteins in many of the cellular compartments are labeled with membrane proteins, cytoplasmic proteins, and proteins within the nucleus being the most prevalent8,9. To ensure proteins were modified within intact cells, fluorescent images of CellROX treated cells were performed following H2O2 treatment and irradiation (Figure 6B)8. The stability of the cells throughout the labeling process further confirms the efficacy of IC-FPOP to probe proteins in their native cellular environment. By using tandem-mass spectrometry, these modifications can be localized to specific amino acids on a protein. Figure 7 represents a modification that takes place during IC-FPOP along with its extracted ion chromatogram. The shift observed in the extracted ion chromatogram translates to the change in hydrophobicity caused by the oxidized methionine in the modified peptide.
To test if the FPOP modifications probe solvent accessibility inside the cells, in-cell labeled actin was compared to both an in vitro footprinting study and various crystal structures of actin (Figure 8)8. The in-cell labeled actin is represented in Figure 8A shows comparable extents of oxidation from the in vitro study by Guan et al.10 (Figure 8B), concluding actin has similar solvent accessibility for both in-cell and in vitro studies. To further confirm IC-FPOP was probing the solvent accessibility of actin, the extent of FPOP modifications were compared to the solvent accessibility of the labeled residues calculated from two actin crystal structures (Figure 8C). This correlation demonstrates that IC-FPOP probes the solvent accessibility of the monomeric protein well.
Figure 1: How to properly construct ferules. (A) Place ferrules, silica tubing, and sleeve together before tightening. (B) Tighten all components together. (C) Final product will produce a ferule that has been tightened down on the sleeve. Please click here to view a larger version of this figure.
Figure 2: Setting up IC-FPOP flow system. (A) Image of a fully assembled IC-FPOP flow system positioned next to the laser. (B) Example of a spacer needed to increase the outer diameter of the 500 µL syringes to successfully tighten all syringes down together. (C) Representative pictures showing the space required for the magnetic stirrers. (D) Stoppers are necessary to stall the syringe pump without breaking the syringes. Please click here to view a larger version of this figure.
Figure 3: Schematic of the flow system developed for IC-FPOP. Blue lines represent silica tubing with a 450 µm ID and 670 µm OD, red lines have a 150 µm ID and 360 µm OD, and orange lines have a 75 µm ID and 360 µm OD. Please click here to view a larger version of this figure.
Figure 4: Protein analysis software used to detect FPOP modifications. A typical workflow with the corresponding modifications searched in each node. Please click here to view a larger version of this figure.
Figure 5: The single cell flow system hydrodynamically focuses the cells into a single stream. (A) Orthogonal YZ stack illustrating 3D focusing of the cellular analyte (red, TMRM fluorophore) surrounded by the sheath buffer (green, FITC fluorophore). Three-dimensional average intensity heat map of the sheath buffer (B) and cellular analyte (C). Lower intensities are blue and highest are red (B-C). This figure has been modified from Rinas et al.9 Please click here to view a larger version of this figure.
Figure 6: Utilization of the IC-FPOP Flow System drastically increases FPOP modified proteins in intake cells. (A) Comparison of oxidized proteins identified with and without the flow system. The flow system identified 1391 FPOP modified proteins while only 105 proteins were identified with no flow system with an overlap of 58 modified proteins. This figure has been modified from Rinas et al.9 (B) Fluorescence imaging of CellROX treated cells after IC-FPOP show the cells are still intact after oxidative labeling. Cells were imaged using an Olympus Fluoview FV1000 MPE multiphoton microscope at 665 nm. Image shown is a single slice. This figure has been modified from Espino et al.8 Please click here to view a larger version of this figure.
Figure 7: Examples of tandem MS/MS spectra that take place during IC-FPOP. Product-ion (MS/MS) spectra of an (A) unmodified peptide, and an (B) oxidation detected on residue M8 found on that peptide. A representative EIC of the (C) unmodified peptide and (D) modified peptide. Please click here to view a larger version of this figure.
Figure 8: IC-FPOP is effective in probing the solvent accessibility of proteins. (A) Extent of modification for the 9 oxidatively modified peptides from actin. Values are shown as averages plus and minus standard deviation (n = 3). (B) Modification of actin peptides oxidized in vitro by synchrotron radiolysis from Guan et al.10 (C) Correlation of residue FPOP modifications with SASA in the tight (triangles, dashed trend line) and open (circles, solid trend line) states of actin. This figure has been modified from Espino et al.8 Please click here to view a larger version of this figure.
Several mass spectrometry-based techniques have been developed to study protein structure and protein-ligand complexes in a proteome-wide manner in whole cells or cell lysates. These techniques include but are not limited to stability of proteins from rate of oxidation (SPROX), thermal proteome profiling (TPP), chemical cross-linking (XL-MS), and hydroxyl radical protein footprinting (HRPF). Each technique has unique limitations and advantages compared to one another, which have been extensively reviewed12. Each of these methods have been used for proteome wide structural biology to elucidate protein structure and ultimately function within the complex cellular environment. IC-FPOP is a HRPF technique that utilizes hydroxyl radicals to oxidatively modify solvent exposed side chains of amino acids, probing protein structure and protein-ligand interactions within viable cells13. IC-FPOP is an improvement to initial HRPF in live cells that used Fenton chemistry to generate radicals on the minutes timescale14. In this study, structural changes in an integral membrane protein in response to lowering the pH or ionic strength of the buffer were successfully characterized with good oxidation coverage across the protein. Compared to Fenton chemistry, IC-FPOP is much faster, modifying proteins on the microsecond timescale, thus enabling the native protein conformation to be studied.
A key test for IC-FPOP is to confirm the viability of the cells following exposure to H2O2. Using a 40 cm mixing line, the cells are incubated in H2O2 for roughly 3 s before irradiation. This time can be adjusted by changing the length of this silica tubing. It is noteworthy that although the use of trypan blue to test cell viability shows the integrity of the cells are sustained following H2O2 incubation, the cells could potential be under stress effecting signaling pathways that interact with H2O2. Fortunately, the short incubation time is faster than protein synthesis providing confidence the proteins present are not induced by H2O2.
The next important step is to confirm proper assembly of the flow system. Once assembled, ensure there are no leaks present after flushing the system with the desired buffer. If leaks are present, make sure that the silica tubing was cut properly and is flush against the ferrule to make a proper seal once tightened down. All parts are hand-tightened, so no tools are necessary. During each IC-FPOP experiment, make sure that the magnetic stirrers in the cell syringe remain in motion. This small agitation limits the number of cells that settle at the bottom of the syringe but is not harsh enough to shear the cells. After one run, there is roughly 50 µL of cells left in the syringe. Always make sure to dilute this out with a rinsing step to limit the number of cells that carry over to the next experiment. It is recommended to use a fresh cell syringe if multiple cell treatments are being compared. It is also important to select an appropriate buffer for the cells being tested. Some buffers quench the hydroxyl radical leading to fewer modifications on proteins. Xu et al. have shown that some commonly used buffers decrease the hydroxyl radical lifetime11. DPBS and HBSS are common buffers used for IC-FPOP experiments.
Following IC-FPOP, optimize the digestion protocol based on the parameters needed. Since FPOP produces irreversible covalent modifications, there is ample time available for a thorough digestion and clean-up without losing the labeling coverage. Always test and normalize the protein concentration so uniform peptide concentrations are loaded for tandem mass spectrometry. Finally, be mindful that an immunoprecipitation cannot be performed in conjunction with IC-FPOP. If an FPOP modification targets the region of interaction the affinity of the antibody will be lowered. To help increase the identification of FPOP modifications, 2D-chromatographic separation steps have shown to more than triple the number of oxidized peptides detected15.
A challenge of any FPOP experiment is the complicated level of data analysis due to the possible oxidation products that can arise. This is true for both in-cell or in vitro but is drastically increased with the added complexity of analyzing cell lysates. With further optimization of IC-FPOP more proteins with higher modification coverages are arising, thus expeditiously making analysis more arduous. The shear amount of data generated from a single IC-FPOP experiment limits the use of manual validation causing researchers to rely more heavily on software. Due to this, Rinas et al. developed a quantitation strategy for HRPF using Proteome Discoverer (PD)16. This method utilizes a multi-search node workflow on PD combined with a quantitative platform in a spreadsheet. Further improvements on the IC-FPOP platform are underway to increase the number of identified peptides with FPOP modifications along with increased reproducibility and quantitation accuracy.
The authors have nothing to disclose.
This work was supported by the NSF CAREER Award (MCB1701692) for LMJ.
15 mL Conical Centrifuge Tubes | Fisher Scientific | 14-959-53A | any brand is sufficient |
5 mL Gas Tight Syringe, Removable Luer Lock | SGE Analytical Science | 008760 | |
50 mL Conical Centrifuge Tubes | Fisher Scientific | 14-432-22 | any brand is sufficient |
500 µL SGE Gastight Syringes: Fixed Luer-Lok Models | Fisher Scientific | SG-00723 | |
Acetone, HPLC Grade | Fisher Scientific | A929-4 | 4 L quantity is not necessary |
Acetonitrile with 0.1% Formic Acid (v/v), LC/MS Grade | Fisher Scientific | LS120-500 | |
ACQUITY UPLC M-Class Symmetry C18 Trap Column, 100 Å, 5 µm, 180 µm x 20 mm, 2G, V/M, 1/pkg | Waters | 186007496 | |
ACQUITY UPLC M-Class System | Waters | ACQUITY UPLC M-Class System | |
Aluminum Foil | Fisher Scientific | 01-213-100 | any brand is sufficient |
Aqua 5 µm C18 125 Å packing material | Phenomenex | 04A-4299 | |
Centrifuge | Eppendorf | 022625501 | |
Delicate Task Wipers | Fisher Scientific | 06-666A | |
Dithiothreiotol (DTT) | AmericanBio | AB00490-00005 | |
DMSO, Anhydrous | Invitrogen | D12345 | |
EX350 excimer laser | GAM Laser | EX350 excimer laser | |
FEP Tubing 1/16" OD x 0.020" ID | IDEX Health & Science | 1548L | |
Formic Acid, LC/MS Grade | Fisher Scientific | A117-50 | |
HV3-2 VALVE | Hamilton | 86728 | |
Hydrogen Peroxide | Fisher Scientific | H325-100 | any 30% hydrogen peroxide is sufficient |
Iodoacetamide (IAA) | ACROS Organics | 122270050 | |
Legato 210 syringe pump | KD Scientific | 788212 | Any syringe pump that can hold 4, 5 mL syringes, withdraw and expel liquid, and have a way to stale the motor should work |
Luer Adapter Female Luer to 1/4-28 Male Polypropylene | IDEX Health & Science | P-618L | |
Methanol, LC/MS Grade | Fisher Scientific | A454SK-4 | 4 L quantity is not necessary |
Microcentrifuge | Thermo Scientific | 75002436 | |
N,N'-Dimethylthiourea (DMTU) | ACROS Organics | 116891000 | |
NanoTight Sleeve Green 1/16" ID x .0155" ID x 1.6" | IDEX Health & Science | F-242X | |
NanoTight Sleeve Yellow 1/16" OD x 0.027" ID x 1.6" | IDEX Health & Science | F-246 | |
N-tert-Butyl-α-phenylnitrone (PBN) | ACROS Organics | 177350250 | |
Orbitrap Fusion Lumos Tribrid Mass Spectrometer | Thermo Scientific | Orbitrap Fusion Lumos Tribrid Mass Spectrometer | other high resolution instruments (e.g. Q exactive Orbitrap or Orbitrap Fusion) can be used |
PE50-C pyroelectric energy meter | Ophir Optronics | 7Z02936 | |
Pierce Quantitative Colorimetric Peptide Assay | Thermo Scientific | 23275 | |
Pierce Rapid Gold BCA Protein Assay Kit | Thermo Scientific | A53225 | |
Pierce Trypsin Protease, MS Grade | Thermo Scientific | 90058 | |
Pierce Universal Nuclease for Cell Lysis | Fisher Scientific | 88702 | |
Polymicro Cleaving Stone, 1" x 1" x 1/32" | Molex | 1068680064 | any capillary tubing cutter is sufficient |
Polymicro Flexible Fused Silica Capillary Tubing, Inner Diameter 150 µm, Outer Diameter 360 µm, TSP150350 | Polymicro Technologies | 1068150024 | |
Polymicro Flexible Fused Silica Capillary Tubing, Inner Diameter 450 µm, Outer Diameter 670 µm, TSP450670 | Polymicro Technologies | 1068150025 | |
Polymicro Flexible Fused Silica Capillary Tubing, Inner Diameter 75 µm, Outer Diameter 360 µm, TSP075375 | Polymicro Technologies | 1068150019 | |
Potassium Phosphate Monobasic | Fisher Scientific | P382-500 | |
Proteome Discover 2.2 (bottom-up proteomics software) | Thermo Scientific | OPTON-30799 | |
Rotary Magnetic Tumble Stirrer | V&P Scientific, Inc. | VP 710D3 | |
Rotary Magnetic Tumble Stirrer, accessory kit for use with Syringe Pumps | V&P Scientific, Inc. | VP 710D3-4 | |
Super Flangeless Ferrule w/SST Ring, Tefzel™ (ETFE), 1/4-28 Flat-Bottom, for 1/16" OD | IDEX Health & Science | P-259X | |
Super Flangeless Nut PEEK 1/4-28 Flat-Bottom, for 1/16" & 1/32" OD | IDEX Health & Science | P-255X | |
Super Tumble Stir Discs, 3.35 mm diameter, 0.61 mm thick | V&P Scientific, Inc. | VP 722F | |
Thermo Scientific Pierce RIPA Buffer | Fisher Scientific | PI89900 | |
Tris Base | Fisher Scientific | BP152-500 | |
Upchurch Scientific Low-Pressure Crosses: PEEK | Fisher Scientific | 05-700-182 | |
Upchurch Scientific Low-Pressure Tees: PEEK | Fisher Scientific | 05-700-178 | |
UV Fused Silica Plano-Convex Spherical Lenses | THORLABS | LA4052 | |
V&P Scientific IncSupplier Diversity Partner TUMBL STIR DISC PARYLENE 1000 | V&P Scientific, Inc. | VP724F | |
VHP MicroTight Union for 360µm OD | IDEX Health & Science | UH-436 | |
Water with 0.1% Formic Acid (v/v), LC/MS Grade | Fisher Scientific | LS118-500 | |
Water, LC/MS Grade | Fisher Scientific | W6-4 |