This manuscript describes a step-by-step protocol for the generation and quantification of diverse reprogrammed cardiac subtypes using a retrovirus-mediated delivery of Gata4, Hand2, Mef2c, and Tbx5.
Direct reprogramming of one cell type into another has recently emerged as a powerful paradigm for regenerative medicine, disease modeling, and lineage specification. In particular, the conversion of fibroblasts into induced cardiomyocyte-like myocytes (iCLMs) by Gata4, Hand2, Mef2c, and Tbx5 (GHMT) represents an important avenue for generating de novo cardiac myocytes in vitro and in vivo. Recent evidence suggests that GHMT generates a greater diversity of cardiac subtypes than previously appreciated, thus underscoring the need for a systematic approach to conducting additional studies. Before direct reprogramming can be used as a therapeutic strategy, however, the mechanistic underpinnings of lineage conversion must be understood in detail to generate specific cardiac subtypes. Here we present a detailed protocol for generating iCLMs by GHMT-mediated reprogramming of mouse embryonic fibroblasts (MEFs).
We outline methods for MEF isolation, retroviral production, and MEF infection to accomplish efficient reprogramming. To determine the subtype identity of reprogrammed cells, we detail a step-by-step approach for performing immunocytochemistry on iCLMs using a defined set of compatible antibodies. Methods for confocal microscopy, identification, and quantification of iCLMs and individual atrial (iAM), ventricular (iVM), and pacemaker (iPM) subtypes are also presented. Finally, we discuss representative results of prototypical direct reprogramming experiments and highlight important technical aspects of our protocol to ensure efficient lineage conversion. Taken together, our optimized protocol should provide a stepwise approach for investigators to conduct meaningful cardiac reprogramming experiments that require identification of individual CM subtypes.
The heart is the first functional organ to develop in the embryo1,2. In conjunction with the circulatory system, it supplies oxygen, nutrients, and a waste disposal mechanism during development. Three weeks after fertilization, the human heart beats for the first time and its proper regulation is maintained by cardiomyocytes (CMs). The irreversible loss of these specialized cells is therefore the fundamental issue underlying progressive heart failure. While some organisms such as the zebrafish and Xenopus have the potential for cardiac regeneration, the adult mammalian heart is more limited3,5,6. Thus, given the critical function of the heart, it is not astonishing that heart disease is the leading cause of death in the world, accounting for 600,000 deaths in the United States alone7. Therefore, cell-based therapies to efficiently repair or replace the injured myocardium are of great clinical interest.
The seminal study of Yamanaka and colleagues8 showed that forced expression of four transcription factors is sufficient to convert fully differentiated fibroblast cells to pluripotent stem cells. However, the tumorigenic capacity of all pluripotent stem cell strategies has been a critical concern in their use for therapeutic purposes. This motivated the scientific field to search for alternative methods to transdifferentiate cells while avoiding a pluripotent stage. Recently, several groups have shown the feasibility of this strategy by displaying direct conversion of mouse fibroblasts to induced cardiomyocyte-like cells (iCLMs) with the ectopic expression of the transcription factors Gata4, Mef2c, Tbx5, and later on, Hand2 (GMT and GHMT, respectively)9,10. Furthermore, the same strategy can be performed in vivo and in human-derived tissues9,11,12. Recent studies have highlighted additional factors or signaling pathways that can be modulated to further improve cardiac reprogramming efficiency13,14,15. Taken together, these studies demonstrate the potential of directed transdifferentiation for regenerative therapies. However, the low efficiency of CM reprogramming, the unknown molecular mechanisms, inconsistent reproducibility due to methodological differences16, and the heterogeneous nature of iCLMs remain unaddressed.
In order to directly evaluate iCLM heterogeneity, we designed a discrete and robust single-cell assay for the identification of sarcomere development and cardiac lineage specification-two necessary characteristics of functional cardiomyocytes. There are at least three major types of CM in the heart as defined by their location and unique electrical properties: atrial (AM), ventricular (VM) and pacemaker (PM)17,18,19,20. In an orchestrated combination, they allow the proper pumping of blood. During heart injury, one or all subtypes might be affected, and the type of cell therapy would need to be addressed on a case-by-case basis. Currently, most strategies focus on the overall generation of cardiomyocytes, while little work is being done to study the molecular mechanisms that regulates subtype specification.
The following study details how to properly quantify well-organized sarcomeres and identify a diverse set of cardiomyocyte subtypes. Using a pacemaker (PM)-specific reporter mouse, we are able to apply an immunocytochemical approach to distinguish induced atrial-like myocytes (iAM), induced ventricular-like myocytes (iVM), and induced PM-like myocytes (iPMs)21. Based on our observations, only cells that exhibit sarcomere organization are capable of spontaneous beating. This unique reprogramming platform allows for assessing the role of certain parameters in sarcomere organization, subtype specification, and efficiency of CM reprogramming at single-cell resolution.
All experimental procedures involving animal practices were approved by the Institutional Animal Care and Use Committee at UT Southwestern Medical Center.
1. Isolation of Hcn4-GFP E12.5 Mouse Embryonic Fibroblast (MEFs)
2. Retrovirus Production and Reprogramming
Caution: The following protocol requires production and handling of infectious retroviruses. Perform the following steps in a Biosafety Level 2 cabinet under BSL-2 guidelines and sterile technique. Use 10% bleach to dispose of all materials exposed to retroviruses.
3. Immunostaining of Reprogrammed MEFs
4. Identification of Cardiac Subtypes Using Confocal Microscopy
NOTE: For imaging, a confocal microscope equipped with at least 2 fluorescent detectors capable of spectral detection at 405, 488, 555, and 639 nm wavelengths is necessary in order to identify iPMs, iAMs, and iVMs. Image cells using a Plan-Apochromat 20X/0.75 objective or better. Using the manufacturer's image analysis software, scanning zoom images can achieve 40X-oil immersion quality images.
5. Quantification
NOTE: In order to assess the actual number of potentially reprogrammed MEFs, 2 wells of a 24-well plate are seeded in parallel to the experimental wells and are harvested one day after plating. The total number of cells plated is then determined by averaging the two wells. This becomes the actual total cells plated (aTotal).
Taking advantage of the PM-specific reporter mouse, we developed a multiplex immunostaining strategy to identify diverse endogenous myocytes as depicted in Figure 1. Following the reprogramming steps shown in Figure 2, induction of subtype-specific CMs can be detected as early as day 421, albeit at a low-rate. By day 14, the experiment can be stopped and assessed for sarcomere organization (Figure 3) and subtype-specification (Figure 4). Figure 5 summarizes the workflow of slide preparation for ICC (Figure 5 Panel A), and the quantification of iCLM subtype-specific cells (Figure 5 Panel B/C).
Figure 1: Subtype Diversity of Endogenous Cardiomyocytes. (A-B) Immunocytochemistry (ICC) staining of neonatal atrial cardiomyocytes from Hcn4-GFP reporter mice for α-actinin (sarcomere marker, red), Hcn4-GFP (PM marker, green), and Nppa (atrial marker, orange). (C) Immunocytochemistry staining of neonatal ventricular cardiomyocytes from Hcn4-GFP reporter mice for α-actinin (sarcomere marker, red), Hcn4-GFP (PM marker, green), and Myl2 (ventricular marker, orange). DAPI (blue): nuclear staining. Scale bars: 20 µm. Please click here to view a larger version of this figure.
Figure 2: Reprogramming Timeline Schematic. Schematic representation of GHMT-induced Hcn4-GFP MEFs. The three major stages are depicted. Please click here to view a larger version of this figure.
Figure 3: Degree of Sarcomere Organization. ICC staining of Hcn4-GFP MEFs 14 days after GHMT transduction for α-actinin (sarcomere marker, red) shows a diverse range of sarcomere organization. The degree of organization increases from left to right panels. Representative pictures of each level (n= 3). Scale bar: 20 µm. Please click here to view a larger version of this figure.
Figure 4: Subtype-specific Reprogrammed Cardiomyocytes. (A-C) ICC staining of GHMT-transduced Hcn4-GFP MEFs for α-actinin (sarcomere marker, red), Hcn4-GFP (PM marker, green), Nppa (atrial marker, orange), or Myl2 (ventricular marker, orange). DAPI (blue): nuclear staining. Scale bars: 20 µm. Please click here to view a larger version of this figure.
Figure 5: Image Acquisition and Analysis Workflow. Schematic representation for image analysis. Panel A depicts the priority order of assigning sarcomere+ and subtype-specificity to a cell. Panel B (i-iv) and C show the expected results from an average GHMT-iCLM experiment. Key points and formulas are shown in green. Please click here to view a larger version of this figure.
iCLM media | ||
Component | Volume (mL) | Final concentration |
DMEM | 270 | |
Medium 199 | 90 | |
FBS | 50 | 10% |
Insulin-Transferrin-Selenium G | 2.5 | 0.50% |
MEM vitamin solution | 10 | 2% |
MEM Amino Acids | 20 | 4% |
Non-essential amino acids | 10 | 2% |
Antibiotic-Antimycotics | 10 | 2% |
B-27 supplement | 10 | 2% |
Heat inactivated Horse Serum | 25 | 5% |
Na-Pyruvate | 2.5 | 1.5 mM |
Plat-E media (PE) | ||
Component | Volume (mL) | Final concentration |
DMEM | 450 | |
FBS | 50 | 10% |
Penicillin/Streptomycin | 5 | 1% |
Puromycin | 0.05 | 1 μg/mL |
Blasticidin | 0.5 | 10 μg/mL |
Fibroblast medium (FB) | ||
Component | Volume (mL) | Final concentration |
DMEM | 450 | |
FBS | 50 | 10% |
Penicillin/Streptomycin | 5 | 1% |
Glutamax | 5 | 1% |
Transfection medium (TxF) – Filtered (0.45 μm) | ||
Component | Volume (mL) | Final concentration |
DMEM | 450 | |
FBS | 50 | 10% |
Immunocytochemistry (ICC) staining buffer | ||
Component | Volume (mL) | Final concentration |
1x PBS | 5 | |
1x Universal blocking buffer | 5 |
Table 1: Culture Medium. Table summary for the preparation of the several mediums used during GHMT-induced reprogramming.
A) Cell seeding and transfection | ||||||
Plate/Dish | Surface Area (cm2) | Seeding density (cells) | Growth medium (mL) | Total DNA amount to transfect (μg) | Transfection Reagent (μL) | Reduced Serum Media (μL) |
15 cm plate | 152 | 1.00E+06 | 20 | 25 | 75 | 600 |
10 cm plate | 55 | 5.50E+06 | 10 | 9 | 27 | 300 |
6 cm plate | 21 | 2.20E+06 | 4 | 3.5 | 10.5 | 105 |
6 well/x1 | 9 | 1.00E+06 | 2 | 2 | 6 | 60 |
12 well/x1 | 4 | 4.00E+05 | 1 | 0.5 | 1.5 | 15 |
24 well/x1 | 2 | 2.00E+05 | 0.5 | 0.3 | 0.9 | 9 |
48 well/x1 | 1 | 1.70E+05 | 0.25 | 0.15 | 0.45 | 4.5 |
B) Fibroblast seeding and induction | ||||||
Plate/Dish | Fibroblast seeding density (millions) | Approximate infection units for iCLM | ||||
6 cm plate | 0.22-0.33 | 5.00E+7 (~ 5 mL) | ||||
6 well/x1 | 0.1-0.15 | 3.00E+7 (~ 3 mL) | ||||
12 well/x1 | 0.04-0.06 | 1.30E+7 (~ 1 mL) | ||||
24 well/x1 | 0.02-0.03 | 6.50E+6 (~ 0.8 mL) | ||||
48 well | 0.001-0.015 | 3.00E+6 (~ 0.4 mL) |
Table 2: Seeding, Transfection and Induction Formats. (A) Table summary for the plating and transfection of cells. (B) Seeding density and approximate infection units (or viral supernatant) needed to induce MEFs into cardiomyocyte-like cells.
The present study provides a direct-reprogramming strategy for conversion of MEFs into a diverse set of cardiac subtypes via retrovirus-mediated expression of the cardiac transcription factors Gata4, Mef2c, Tbx5, and Hand2 (GHMT). Using a multiplex immunostaining approach in combination with a PM-specific reporter mouse, we are able to identify iAM, iVMs, and iPMs at single cell resolution. Such an assay allows for an experimental in vitro system capable of isolating the contributions of individual transcription factors towards subtype diversity and sarcomere development. In parallel, this could bring insight to new transcription factors or small molecules that bias iCLMs towards a particular lineage. Nevertheless, there are several critical steps for the successful completion of this assay. Below, we address the impact of viral titer, fibroblast quality, and imaging analysis in a general iCLM experiment.
In our study, we employ ecotropic-retroviruses to reprogram E12.5 MEFs. We noticed the retroviral titer is directly related to the quality of the cells. High passage number (> 35) and poor culturing techniques severely affect the quality of the retroviral particles; therefore, there are several considerations to keep in mind. Plat-E cells do not produce VSV-G pseudotyped virus, and are thus unable to withstand ultracentrifugation or freezing cycles24,25. In order to preserve the longevity of the cells, it is imperative to maintain the stock with antibiotic selection. However, they should be maintained in antibiotic free media during viral production. In our experience, the transfection reagent used here provides the highest transfection efficiencies in cells. If other transfection methods are to be used, comparing the viral titers produced is essential26. Although there are recommendations by the manufacturer to harvest the viral supernatant 48 h after transfection, we observed that two 24-h harvesting rounds yield higher reprogramming efficiencies while avoiding toxic effects usually associated with higher-titer viral preps. Furthermore, though several studies have shown the feasibility of commercial viral supernatant concentrators27, we have not employed these in our regular protocol in order to maintain a higher throughput.
In addition to high titer viral cocktails, fibroblast quality is of crucial importance for a successful reprogramming assay28. If timed correctly, freshly isolated MEFs should be utilized due to their higher efficiencies compared to frozen stocks. This could be related to the nature of retroviruses, as they need a highly-proliferative host in order to integrate29. Additionally, MEF seeding density plays a critical role. We have included a table with the seeding densities employed in our experiments (Table 2). Moreover, passaging the MEFs will also significantly decrease reprogramming efficiency.
Immunocytochemistry (ICC) is our standard technique for analysis of sarcomere organization and subtype specification. With the help of a PM-GFP reporter mouse, we were able to form an antibody panel for the detection of three major cardiac subtypes (AM, VM, and PM). However, due to constraints of antibody species availability and the limitation of 4-channels on a standard confocal microscope set-up, two coverslips per subtype are needed to quantify the prevalence of all three subtypes. One coverslip will stain for α-Actinin/GFP(Hcn4)/Myl2, and one for α-Actinin/GFP(Hcn4)/Nppa. Based on our previous observation that sarcomeric structure is a common characteristic of all CMs and a potential prerequisite for subtype specification21, the first step in our analysis is determining sarcomere+ cells. Yet, due to its subjective nature, establishing the level of sarcomere organization is perhaps the most difficult part of this assay; this can be limited by averaging multiple observer's quantifications or by developing computational cell segmentation software to automate the process30. Using endogenous cells as a point of reference, we discovered a threshold for well-organized sarcomere+ and utilized that to score iCLMs (Figure 3). Given these parameters, an average experiment will give rise to 20 – 30% α-Actinin+ cells but only 1% are α-Actinin+/Sarcomere+. Of the 1% sarcomere+ cells, ~ 30% will be Nppa+, Myl2+,or Hcn4-GFP+.
Given that cardiomyocytes are structurally complex, population-based gene expression (e.g. qRT-PCR) or flow cytometry analyses cannot capture the intricate morphological changes that occur during iCLM reprogramming. In contrast, patch clamping and calcium transient imaging are highly stringent single-cell functional assays, but specialized skills and equipment are required to conduct these experiments. Thus, the described methodology is unique in that it provides a straightforward approach to study key structural and functional parameters of iCLM reprogramming without significantly compromising throughput.
Despite the many recent advances in direct reprogramming, much work remains to be done to better understand the molecular mechanisms that regulates cardiac reprogramming, and more specifically, subtype specification. These mechanisms will become especially important to translate direct reprogramming for clinical applications. As such, in this study we describe a platform capable of directly modulating discrete parameters to assess the contribution towards sarcomere development, subtype specification, and iCLM maturity. Moreover, this system can be further developed to work in a high-throughput format allowing for complex screening of small molecules or extracellular matrixes for the next step in regenerative cardiology.
The authors have nothing to disclose.
A.F.-P. was supported by the National Science Foundation Graduate Research Fellowship under Grant No.2015165336. N.V.M was supported by grants from the NIH (HL094699), Burroughs Wellcome Fund (1009838), and the March of Dimes (#5-FY14-203). We acknowledge Young-Jae Nam, Christina Lubczyk, and Minoti Bhakta for their important contributions to protocol development and data analysis. We also thank John Shelton for valuable technical input and members of the Munshi lab for scientific discussion.
DMEM | Sigma | D5796 | Component of iCLM media, Plat-E media, fibroblast, and Transfection media |
Medium 199 | Thermo Fisher Scientific | 11150059 | Component of iCLM media |
Fetal bovine serrum (FBS) | Sigma | F2442 | Component of iCLM media, Plat-E media, fibroblast, and Transfection media |
Insulin-Transferrin-Selenium G | Thermo Fisher Scientific | 41400-045 | Component of iCLM media |
MEM vitamin solution | Thermo Fisher Scientific | 11120-052 | Component of iCLM media |
MEM amino acids | Thermo Fisher Scientific | 1601149 | Component of iCLM media |
Non-Essential amino acids | Thermo Fisher Scientific | 11140-050 | Component of iCLM media |
Antibiotic-Antimycotics | Thermo Fisher Scientific | 15240062 | Component of iCLM media |
B-27 supplement | Thermo Fisher Scientific | 17504044 | Component of iCLM media |
Heat-Inactivated Horse Serum | Thermo Fisher Scientific | 26050-088 | Component of iCLM media |
NaPyruvate | Thermo Fisher Scientific | 11360-70 | Component of iCLM media |
Penicillin/Streptomycin | Thermo Fisher Scientific | 1514022 | Component of Plat-E media and fibroblast media |
Puromycin | Thermo Fisher Scientific | A11139-03 | Component of Plat-E media |
Blasticidin | Gemini Bio-Products | 400-128P | Component of Plat-E media |
Glutamax | Thermo Fisher Scientific | 35050-061 | Component of Fibroblast media |
Confocal laser scanning LSM700 | Zeiss | For confocal analysis | |
FuGENE 6 transfection Reagent | Promega | E2692 | Transfection reagent |
Opti-MEM Reduced Serum Medium | Thermo Fisher Scientific | 31985-070 | Transfection reagent |
Polybrene | Millipore | TR-1003-G | Induction reagent. Use at a final concentration of 8um/mL |
Platinium-E (PE) Retroviral Packagin Cell Line, Ecotropic | CellBiolabs | RV-101 | Retroviral pacaking cell line |
Trypsin 0.25% EDTA | Thermo Fisher Scientific | For MEFs and Plat-E dissociation | |
Mouse anti α-Actinin (Clone EA-53) | Sigma | A7811 | Antibody for confocal analysis. Use at 1:200 |
Chicken anti-GFP IgY | Thermo Fisher Scientific | A10262 | Antibody for confocal analysis. Use at 1:200 |
Rabbit Pab anti-NPPA | Abgent | AP8534A | Antibody for confocal analysis. Use at 1:400 |
Rabbit Pab anti Myl2 IgG | ProteinTech | 10906-1-AP | Antibody for confocal analysis. Use at 1:200 |
Vectashield solution with DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) | Vector Labs | H-1500 | Dye for confocal analysis |
Superfrost Plus Microscope slides | Thermo Fisher Scientific | 12-550-15 | 25 x 75 x 1.0 mm |
BioCoat Fibronectin 12mm coverslips | NeuVitro Corp | GG-12-1.5 | Coverslips for confocal analysis |
100um cell strainer | Thermo Fisher Scientific | 08-771-19 | |
0.45um Syringes filters SFCA 25MM | Thermo Fisher Scientific | 09-740-106 | For virus filtration |
6ml Syringes | Covidien | 8881516937 | For virus filtration |
Goat anti-Chicken IgY (H&L) A488 | Abcam | AB150169 | Secondary antibody for confocal analysis. Use at 1:400 |
Donkey anti-rabbit A647 IgG(H+L) | Thermo Fisher Scientific | A31573 | Secondary antibody for confocal analysis. Use at 1:400 |
Goat anti-mouse IgG(H+L) A555 | Thermo Fisher Scientific | A21422 | Secondary antibody for confocal analysis. Use at 1:400 |
Triton X-100 | Sigma | 93443-100ml | For cell permeabilization |
Dulbecco's PBS without CaCl2 and MgCl2 (D-PBS) | Sigma | D8537 | |
Power Block 10X Universal Blocking reagent | Thermo Fisher Scientific | NC9495720 | Dilute to 1X in H20 |
16% Paraformaldehyde aqueous solution (PFA) | Electro Microscopy Sciences | 15710 | Use at 4% diluted in dH20 |
6 cm plates | Olympus | 25-260 | |
6-well plates | Genesee Scientific | 25-105 | |
24-well plates | Genesee Scientific | 25-107 | |
10 cm Tissue culture dishes | Corning | 4239 | |
15 cm Tissue culture dishes | Thermo Fisher Scientific | 5442 | |
15 ml Conical tubes | Corning | 4308 | |
50 ml Conical tubes | Corning | 4249 | |
0.4% Trypan blue solution | Sigma | T8154 | For viability |
Ethyl Alcohol 200 proof | Thermo Fisher Scientific | 7005 | |
Bleach | Thermo Fisher Scientific | 6009 |