This manuscript describes a step-by-step protocol for the generation and quantification of diverse reprogrammed cardiac subtypes using a retrovirus-mediated delivery of Gata4, Hand2, Mef2c, and Tbx5.
Direct reprogramming of one cell type into another has recently emerged as a powerful paradigm for regenerative medicine, disease modeling, and lineage specification. In particular, the conversion of fibroblasts into induced cardiomyocyte-like myocytes (iCLMs) by Gata4, Hand2, Mef2c, and Tbx5 (GHMT) represents an important avenue for generating de novo cardiac myocytes in vitro and in vivo. Recent evidence suggests that GHMT generates a greater diversity of cardiac subtypes than previously appreciated, thus underscoring the need for a systematic approach to conducting additional studies. Before direct reprogramming can be used as a therapeutic strategy, however, the mechanistic underpinnings of lineage conversion must be understood in detail to generate specific cardiac subtypes. Here we present a detailed protocol for generating iCLMs by GHMT-mediated reprogramming of mouse embryonic fibroblasts (MEFs).
We outline methods for MEF isolation, retroviral production, and MEF infection to accomplish efficient reprogramming. To determine the subtype identity of reprogrammed cells, we detail a step-by-step approach for performing immunocytochemistry on iCLMs using a defined set of compatible antibodies. Methods for confocal microscopy, identification, and quantification of iCLMs and individual atrial (iAM), ventricular (iVM), and pacemaker (iPM) subtypes are also presented. Finally, we discuss representative results of prototypical direct reprogramming experiments and highlight important technical aspects of our protocol to ensure efficient lineage conversion. Taken together, our optimized protocol should provide a stepwise approach for investigators to conduct meaningful cardiac reprogramming experiments that require identification of individual CM subtypes.
Das Herz ist das erste funktionelle Organ im Embryo 1, 2 zu entwickeln. In Verbindung mit dem Kreislaufsystem, liefert sie Sauerstoff, Nährstoffe und einen Entsorgungsmechanismus bei der Entwicklung. Drei Wochen nach der Befruchtung, schlägt das menschliche Herz zum ersten Mal und seine angemessene Regelung wird gepflegt von Kardiomyozyten (CMs). Der irreversible Verlust dieser spezialisierten Zellen ist daher die grundlegende Frage progressive Herzinsuffizienz zugrunde liegen. Während einige Organismen wie Zebrafisch und Xenopus das Potential für kardiale Regeneration haben, ist der erwachsenen Säugetier – Herzen begrenzteren 3, 5, 6. Somit ist die kritische Funktion des Herzens gegeben, ist es nicht erstaunlich , dass Herzkrankheit die häufigste Todesursache in der Welt ist, für 600.000 Todesfälle in den Staaten 7 allein Vereinigten Buchhaltung. Dasrefore, zellbasierte Therapien effizient zu reparieren oder den verletzten Myokard sind von großem klinischem Interesse zu ersetzen.
Die bahnbrechenden Studie von Yamanaka und Kollegen 8 zeigte , dass erzwungene Expression von vier Transkriptionsfaktoren ausreichend ist vollständig differenzierten Fibroblasten – Zellen zu pluripotenten Stammzellen zu konvertieren. Allerdings hat die tumorigenen Kapazität aller pluripotenten Stammzellen Strategien war ein kritisches Problem bei der Verwendung für therapeutische Zwecke. Dies motivierte die wissenschaftlichen Bereich für alternative Methoden zu suchen, Zellen zu transdifferentiate während eine pluripotente Stadium vermieden werden. Kürzlich haben mehrere Gruppen die Durchführbarkeit dieser Strategie dargestellt durch direkte Umwandlung von Maus-Fibroblasten induzierten Kardiomyozyten-ähnliche Zellen (iCLMs) mit der ektopischen Expression des Transkriptionsanzeigefaktoren Gata4, Mef2c, Tbx5, und später, Hand2 (GMT und GHMT bezeichnet) 9, 10. Furthermore kann dieselbe Strategie in vivo durchgeführt werden und in menschlichen Geweben 9, 11, 12. Jüngste Studien haben zusätzliche Faktoren oder Signalwege aufgezeigt , die weiter moduliert werden kann , um Herz Umprogrammierung Effizienz 13, 14, 15 zu verbessern. Zusammengenommen zeigen diese Studien das Potenzial gerichtet transdifferentiation für regenerative Therapien. Allerdings bleiben die geringe Effizienz der CM Umprogrammierung, die unbekannten molekularen Mechanismen, inkonsistente Reproduzierbarkeit aufgrund methodischer Unterschiede 16 und die Heterogenität der iCLMs unadressierte.
Um icLm Heterogenität direkt zu bewerten, haben wir eine diskrete und robuste Single-Cell-Test für die Identifizierung von Sarkomers Entwicklung und Herz-Linie specification-zwei notwendigen Eigenschaften von funktionellen Kardiomyozyten. Es gibt mindestens drei Haupttypen von CM im Herzen , wie durch ihre Lage und einzigartige elektrische Eigenschaften definiert: atrial (AM), ventrikuläre (VM) und Schrittmacher (PM) 17, 18, 19, 20. In einer konzertierten Kombination ermöglichen sie die richtige Pumpen von Blut. Während Herzverletzung, eine oder alle Subtypen betroffen sein könnten, und die Art der Zelltherapie müssten auf einer Fall-zu-Fall-Basis behandelt werden. Derzeit konzentrieren sich die meisten Strategien auf die gesamte Generation von Kardiomyozyten, während wenig Arbeit, die molekularen Mechanismen zu studieren getan wird, um die Subtyp Spezifikation regelt.
Die folgende Studie beschreibt, wie man richtig gut organisierten Sarkomere zu quantifizieren und eine vielfältige Reihe von Kardiomyozyten Subtypen identifizieren. Mit Hilfe eines Schrittmachers (PM) -spezifische Reporter Maus, wir sind in der Lage ein i anwendenmmunocytochemical Ansatz zur Unterscheidung induzierte atriale artigen Myozyten (IAM), induzierte ventrikuläre artigen Myozyten (iVM) und induzierte PM-wie Myozyten (IPMS) 21. Basierend auf unseren Beobachtungen nur Zellen, die Sarkomers Organisation zeigen in der Lage sind spontan zu schlagen. Diese einzigartige Umprogrammierung Plattform ermöglicht es, die Rolle für die Beurteilung der bestimmter Parameter in Sarkomers Organisation, Subtyp-Spezifikation, und die Effizienz der CM Neuprogrammierung bei Einzelzellauflösung.
Die vorliegende Studie bietet einen Direkt Umprogrammierung Strategie zur Umwandlung von MEF in eine vielfältige Reihe von Herz-Subtypen durch Retrovirus-vermittelte Expression des kardialen Transkriptionsfaktoren Gata4, Mef2c, Tbx5 und Hand2 (GHMT). Unter Verwendung eines Multiplex-Immunfärbung Ansatz in Kombination mit einem PM-spezifischen Reporter Maus, sind wir in der Lage iAM zu identifizieren, IVMS und IPMS auf Einzelzellauflösung. Ein solcher Test ermöglicht eine experimentelle in vitro System in de…
The authors have nothing to disclose.
A.F.-P. was supported by the National Science Foundation Graduate Research Fellowship under Grant No.2015165336. N.V.M was supported by grants from the NIH (HL094699), Burroughs Wellcome Fund (1009838), and the March of Dimes (#5-FY14-203). We acknowledge Young-Jae Nam, Christina Lubczyk, and Minoti Bhakta for their important contributions to protocol development and data analysis. We also thank John Shelton for valuable technical input and members of the Munshi lab for scientific discussion.
DMEM | Sigma | D5796 | Component of iCLM media, Plat-E media, fibroblast, and Transfection media |
Medium 199 | Thermo Fisher Scientific | 11150059 | Component of iCLM media |
Fetal bovine serrum (FBS) | Sigma | F2442 | Component of iCLM media, Plat-E media, fibroblast, and Transfection media |
Insulin-Transferrin-Selenium G | Thermo Fisher Scientific | 41400-045 | Component of iCLM media |
MEM vitamin solution | Thermo Fisher Scientific | 11120-052 | Component of iCLM media |
MEM amino acids | Thermo Fisher Scientific | 1601149 | Component of iCLM media |
Non-Essential amino acids | Thermo Fisher Scientific | 11140-050 | Component of iCLM media |
Antibiotic-Antimycotics | Thermo Fisher Scientific | 15240062 | Component of iCLM media |
B-27 supplement | Thermo Fisher Scientific | 17504044 | Component of iCLM media |
Heat-Inactivated Horse Serum | Thermo Fisher Scientific | 26050-088 | Component of iCLM media |
NaPyruvate | Thermo Fisher Scientific | 11360-70 | Component of iCLM media |
Penicillin/Streptomycin | Thermo Fisher Scientific | 1514022 | Component of Plat-E media and fibroblast media |
Puromycin | Thermo Fisher Scientific | A11139-03 | Component of Plat-E media |
Blasticidin | Gemini Bio-Products | 400-128P | Component of Plat-E media |
Glutamax | Thermo Fisher Scientific | 35050-061 | Component of Fibroblast media |
Confocal laser scanning LSM700 | Zeiss | For confocal analysis | |
FuGENE 6 transfection Reagent | Promega | E2692 | Transfection reagent |
Opti-MEM Reduced Serum Medium | Thermo Fisher Scientific | 31985-070 | Transfection reagent |
Polybrene | Millipore | TR-1003-G | Induction reagent. Use at a final concentration of 8um/mL |
Platinium-E (PE) Retroviral Packagin Cell Line, Ecotropic | CellBiolabs | RV-101 | Retroviral pacaking cell line |
Trypsin 0.25% EDTA | Thermo Fisher Scientific | For MEFs and Plat-E dissociation | |
Mouse anti α-Actinin (Clone EA-53) | Sigma | A7811 | Antibody for confocal analysis. Use at 1:200 |
Chicken anti-GFP IgY | Thermo Fisher Scientific | A10262 | Antibody for confocal analysis. Use at 1:200 |
Rabbit Pab anti-NPPA | Abgent | AP8534A | Antibody for confocal analysis. Use at 1:400 |
Rabbit Pab anti Myl2 IgG | ProteinTech | 10906-1-AP | Antibody for confocal analysis. Use at 1:200 |
Vectashield solution with DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) | Vector Labs | H-1500 | Dye for confocal analysis |
Superfrost Plus Microscope slides | Thermo Fisher Scientific | 12-550-15 | 25 x 75 x 1.0 mm |
BioCoat Fibronectin 12mm coverslips | NeuVitro Corp | GG-12-1.5 | Coverslips for confocal analysis |
100um cell strainer | Thermo Fisher Scientific | 08-771-19 | |
0.45um Syringes filters SFCA 25MM | Thermo Fisher Scientific | 09-740-106 | For virus filtration |
6ml Syringes | Covidien | 8881516937 | For virus filtration |
Goat anti-Chicken IgY (H&L) A488 | Abcam | AB150169 | Secondary antibody for confocal analysis. Use at 1:400 |
Donkey anti-rabbit A647 IgG(H+L) | Thermo Fisher Scientific | A31573 | Secondary antibody for confocal analysis. Use at 1:400 |
Goat anti-mouse IgG(H+L) A555 | Thermo Fisher Scientific | A21422 | Secondary antibody for confocal analysis. Use at 1:400 |
Triton X-100 | Sigma | 93443-100ml | For cell permeabilization |
Dulbecco's PBS without CaCl2 and MgCl2 (D-PBS) | Sigma | D8537 | |
Power Block 10X Universal Blocking reagent | Thermo Fisher Scientific | NC9495720 | Dilute to 1X in H20 |
16% Paraformaldehyde aqueous solution (PFA) | Electro Microscopy Sciences | 15710 | Use at 4% diluted in dH20 |
6 cm plates | Olympus | 25-260 | |
6-well plates | Genesee Scientific | 25-105 | |
24-well plates | Genesee Scientific | 25-107 | |
10 cm Tissue culture dishes | Corning | 4239 | |
15 cm Tissue culture dishes | Thermo Fisher Scientific | 5442 | |
15 ml Conical tubes | Corning | 4308 | |
50 ml Conical tubes | Corning | 4249 | |
0.4% Trypan blue solution | Sigma | T8154 | For viability |
Ethyl Alcohol 200 proof | Thermo Fisher Scientific | 7005 | |
Bleach | Thermo Fisher Scientific | 6009 |