Summary

銅(I)によるコランニュレン官能Hexaheliceneの調製は、非平面多環芳香族ユニットのアルキンアジド付加環を - 触媒

Published: September 18, 2016
doi:

Summary

ここでは、合理的な収率で容易に組み立てる3非平面多環芳香族単位から構成される複雑な有機化合物を合成するためのプロトコルを提示します。

Abstract

The main purpose of this video is to show 6 reaction steps of a convergent synthesis and prepare a complex molecule containing up to three nonplanar polyaromatic units, which are two corannulene moieties and a racemic hexahelicene linking them. The compound described in this work is a good host for fullerenes. Several common organic reactions, such as free-radical reactions, C-C coupling or click chemistry, are employed demonstrating the versatility of functionalization that this compound can accept. All of these reactions work for planar aromatic molecules. With subtle modifications, it is possible to achieve similar results for nonplanar polyaromatic compounds.

Introduction

それらの特別な幾何学、コランニュレンとヘリセンが遠い平面から構造を採用し、興味深い特性を生じさせることができる分子であるに。ここ数年では1月15日 、カーボンナノチューブやフラーレンのための分子の受容体の探索は非常に活発な地域であります有機太陽電池、トランジスタ、センサーやその他のデバイス用材料としての可能性アプリケーションに、主に起因16-19。20-28コランニュレンとフラーレンとの間の形状に優れた相補性は設計の目的で、いくつかの研究者の注目を集めています分散力によって超分子会合を確立することができる分子の受容体。29-39

上記非平面の多環芳香族化合物の化学的性質は完全に平面分子について記載したものと同様であるが、所望の選択性および収率を達成するための適切な条件を見出すことが困難な場合がある。40 </sup>本研究では、(7)すべての研究室で見つかった、簡単で一般的な技術を適用することにより、良好な収率でいくつかの手順で3多環芳香族単位を有する分子の合成を提示します。それは溶液中でC 60 37との良好な相互作用を確立するために、ペンチのような構造をとることができるので、分子が非常に重要です。それが原因での立体軸が存在するキラル分子であるヘリセンリンカーに高いキラルフラーレンのおかげでの潜在的な受容体として研究ラインを開くことができます。41-45しかし 、唯一のラセミヘリセンは、この研究で使用されます。

彼らは市販されていないので、この時点では、これらの受容体を合成する唯一の制限は、ヘリセンとcorannulenesの製造です。しかし、新たな方法によれば、彼らは、時間の合理的な短期間に適切な量で得ることができる46-48他の場所で公開されました。

Protocol

1.機能化 2,15-Dimethylhexahelicene 2,15-dimethylhexaheliceneの二臭素 の30%と(過酸化ベンゾイル(BPO)の2,15-dimethylhexaheliceneの0.356グラム(1.0ミリモル)に、新たに再結晶のNブロモスクシンイミド(NBS)の0.374グラム(2.1ミリモル)および24mgの(0.07ミリモル)を計量し、70%の重量安定剤としての水)。磁気攪拌棒を備えた100ミリリットルシュレンクフラ?…

Representative Results

コランニュレン(3 a)と2,15-dimethylhexahelicene( 図3b) は、非常に良好な収率( 図5)との直接的なやり方で現在の方法46-48以下調製することができます。両方の最終的な分子の収束合成の発散を生じる、出発物質として、一般的な分子、2,7-ジメチルナフタレンを共有します。 <p class…

Discussion

最終化合物7は、非平面の多環芳香族前駆体からの6つのステップ3aと各反応における中等度から非常に良好な収率で3 bの後用意されています。このルートで観察された主な制限は、両方の非平面多環芳香族化合物の臭素化しました。しかしながら、化合物4の場合には、遊離コランニュレンの重要な量は、さらに使用?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was funded by the Spanish Ministerio de Economìa y Competitividad (CTQ 2013-41067-P). H.B. acknowledge with thanks a MEC-FPI grant.

Materials

2,15-Dimethylhexahelicene N/A N/A Prepared according to reference 5b,c in the main text.
Corannulene N/A N/A Prepared according to reference 5a in the main text.
N-Bromosuccinimide (NBS) Sigma Aldrich B8.125-5 ReagentPlus®, 99%. Recrystallized from hot water.
Benzoyl peroxide (BPO) Sigma Aldrich B-2030 ~70% (titration). 30% water as stabilizer.
Sodium azide Sigma Aldrich S2002 ReagentPlus®, ≥99.5%.
Gold (III) chloride Hydrate Sigma Aldrich 50778 puriss. p.a., ACS reagent, ≥49% Au basis.
Ethynyltrimethylsilane Sigma Aldrich 218170 98%.
[PdCl2(dppf)] N/A N/A Prepared according to reference 6 in the main text.
CuI N/A N/A Prepared according to reference 7 in the main text.
KF Sigma Aldrich 307599 99%, spray-dried.
(+)-Sodium L-ascorbate Fluka 11140 BioXtra, ≥99.0% (NT).
Copper(II) Sulphate 5-hydrate Panreac 131270 for analysis.
Carbon tetrachloride (CCl4) Fluka 87030 for IR spectroscopy, ≥99.9%.
Dichloromethane (DCM) Fisher Scientific D/1852/25 Analytical reagent grade. Distilled prior to use.
Hexane Fisher Scientific H/0355/25 Analytical reagent grade. Distilled prior to use.
Ethyl acetate Scharlau AC0145025S Reagent grade. Distilled prior to use.
Tetrahydrofuran (THF) Fisher Scientific T/0701/25 Analytical reagent grade. Distilled prior to use.
1,2-Dichloroethane (DCE) Sigma Aldrich D6,156-3 ReagentPlus®, 99%.
Methanol (MeOH) VWR 20847.36 AnalaR NORMAPUR.
Triethyl amine (NEt3) Sigma Aldrich T0886 ≥99%.
Silica gel Acros 360050010 Particle size 40-60mm.
Sand – low iron Fisher Scientific S/0360/63 General purpose grade.
TLC Silica gel 60 F254 Merck 1.05554.0001
Monowave 300 (Microwave reactor) Anton Para
Sonicator Grupo Selecta 3000513 6 Litres.

References

  1. Scott, L. T., Hashemi, M. M., Bratcher, M. S. Corannulene bowl-to-bowl inversion is rapid at room temperature. J. Am. Chem. Soc. 114 (5), 1920-1921 (1992).
  2. Sygula, A., et al. Bowl stacking in curved polynuclear aromatic hydrocarbons: crystal and molecular structure of cyclopentacorannulene. J. Chem. Soc., Chem. Commun. (22), 2571-2572 (1994).
  3. Nuckolls, C., et al. Circular Dichroism and UV−Visible Absorption Spectra of the Langmuir−Blodgett Films of an Aggregating Helicene. J. Am. Chem. Soc. 120 (34), 8656-8660 (1998).
  4. Beljonne, D., et al. Electro-optic response of chiral helicenes in isotropic media. J. Chem. Phys. 108 (4), 1301-1304 (1998).
  5. Treboux, G., Lapstun, P., Wu, Z., Silverbrook, K. Electronic conductance of helicenes. Chem. Phys. Lett. 301 (5-6), 493-497 (1999).
  6. Katz, T. J. Syntheses of Functionalized and Aggregating Helical Conjugated Molecules. Angew. Chem., Int. Ed. 39 (11), 1921-1923 (2000).
  7. Furche, F., et al. Circular Dichroism of Helicenes Investigated by Time-Dependent Density Functional Theory. J. Am. Chem. Soc. 122 (8), 1717-1724 (2000).
  8. Urbano, A. Recent Developments in the Synthesis of Helicene-Like Molecules. Angew. Chem., Int. Ed. 42 (34), 3986-3989 (2003).
  9. Botek, E., Champane, B., Turki, M., André, J. M. Theoretical study of the second-order nonlinear optical properties of [N]helicenes and [N]phenylenes. J. Chem. Phys. 120 (4), 2042-2048 (2004).
  10. Lovas, F. J., et al. Interstellar Chemistry: A Strategy for Detecting Polycyclic Aromatic Hydrocarbons in Space. J. Am. Chem. Soc. 127 (12), 4345-4349 (2005).
  11. Wigglesworth, T. J., Sud, D., Norsten, T. B., Lekhi, V. S., Branda, N. R. Chiral Discrimination in Photochromic Helicenes. J. Am. Chem. Soc. 127 (20), 7272-7273 (2005).
  12. Wu, Y. -. T., Siegel, J. S. Aromatic Molecular-Bowl Hydrocarbons: Synthetic Derivatives, Their Structures, and Physical Properties. Chem. Rev. 106 (12), 4843-4867 (2006).
  13. Tsefrikas, V. M., Scott, L. T. Geodesic Polyarenes by Flash Vacuum Pyrolysis. Chem. Rev. 106 (12), 4868-4884 (2006).
  14. Wu, Y. -. T., Hayama, T., Baldrige, K. K., Linden, A., Siegel, J. S. Synthesis of Fluoranthenes and Indenocorannulenes: Elucidation of Chiral Stereoisomers on the Basis of Static Molecular Bowls. J. Am. Chem. Soc. 128 (21), 6870-6884 (2006).
  15. Wu, Y. -. T., Siegel, J. S. Synthesis, structures, and physical properties of aromatic molecular-bowl hydrocarbons. Top. Curr. Chem. 349, 63-120 (2014).
  16. Pérez, E. M., Martìn, N. Curves ahead: molecular receptors for fullerenes based on concave-convex complementarity. Chem. Soc. Rev. 37 (8), 1512-1519 (2008).
  17. Tashiro, K., Aida, T. Metalloporphyrin hosts for supramolecular chemistry of fullerenes. Chem. Soc. Rev. 36 (2), 189-197 (2007).
  18. Kawase, T. Ball- Bowl- and Belt-Shaped Conjugated Systems and Their Complexing Abilities: Exploration of the Concave−Convex π−π Interaction. Chem. Rev. 106 (12), 5250-5273 (2006).
  19. Martin, N., Pérez, E. M. Molecular tweezers for fullerenes. Pure Appl. Chem. 82 (3), 523-533 (2010).
  20. Hoppe, H., Sariciftci, N. S. Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 16 (1), 45-61 (2006).
  21. Kim, S. N., Rusling, J. F., Papadimitrakopoulos, F. Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules. Adv. Mater. 19 (20), 3214-3228 (2007).
  22. Dennler, G., Scharber, M. C., Brabec, C. J. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater. 21 (13), 1323-1338 (2009).
  23. Helgesen, M., Søndergaard, R., Krebs, F. C. Advanced materials and processes for polymer solar cell devices. J. Mater. Chem. 20 (1), 36-60 (2010).
  24. Brabec, C. J., et al. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater. 22 (34), 3839-3856 (2010).
  25. Delgado, J. L., Bouit, P. -. A., Filippone, S., Herranz, M. A., Martìn, N. Organic photovoltaics: a chemical approach. Chem. Commun. 46 (27), 4853-4865 (2010).
  26. Schnorr, J. M., Swager, T. M. Emerging Applications of Carbon Nanotubes. Chem. Mater. 23 (3), 646-657 (2011).
  27. Wang, C., Takei, K., Takahashi, T., Javey, A. Carbon nanotube electronics – moving forward. Chem. Soc. Rev. 42 (7), 2592-2609 (2013).
  28. Park, S., Vosguerichian, M., Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale. 5, 1727-1752 (2013).
  29. Mizyed, S., et al. Embracing C60 with Multiarmed Geodesic Partners. J. Am. Chem. Soc. 123 (51), 12770-12774 (2001).
  30. Sygula, A., Sygula, R., Ellern, A., Rabideau, P. W. Novel Twin Corannulene: Synthesis and Crystal Structure Determination of a Dicorannulenobarrelene Dicarboxylate. Org. Lett. 5 (15), 2595-2597 (2003).
  31. Georghiou, P. E., Tran, A. H., Mizyed, S., Bancu, M., Scott, L. T. Concave Polyarenes with Sulfide-Linked Flaps and Tentacles: New Electron-Rich Hosts for Fullerenes. J. Org. Chem. 70 (16), 6158-6163 (2005).
  32. Sygula, A., Fronczek, F. R., Sygula, R., Rabideau, P. W., Olmstead, M. M. A Double Concave Hydrocarbon Buckycatcher. J. Am. Chem. Soc. 129 (13), 3842-3843 (2007).
  33. Yanney, M., Sygula, A. Tridental molecular clip with corannulene pincers: is three better than two?. Tetrahedron Lett. 54 (21), 2604-2607 (2013).
  34. Stuparu, M. C. Rationally Designed Polymer Hosts of Fullerene. Angew. Chem., Int. Ed. 52 (30), 7786-7790 (2013).
  35. Le, V. H., Yanney, M., McGuire, M., Sygula, A., Lewis, E. A. Thermodynamics of Host-Guest Interactions between Fullerenes and a Buckycatcher. J. Phys. Chem. B. 118 (41), 11956-11964 (2014).
  36. Álvarez, C. M. Enhanced association for C70 over C60 with a metal complex with corannulene derivate ligands. Dalton Trans. 43 (42), 15693-15696 (2014).
  37. Álvarez, C. M. Assembling Nonplanar Polyaromatic Units by Click Chemistry. Study of Multicorannulene Systems as Host for Fullerenes. Org. Lett. 17 (11), 2578-2581 (2015).
  38. Yanney, M., Fronczek, F. R., Sygula, A. A 2:1 Receptor/C60 Complex as a Nanosized Universal Joint. Angew. Chem. Int. Ed. 54 (38), 11153-11156 (2015).
  39. Kuragama, P. L. A., Fronczek, F. R., Sygula, A. Bis-corannulene Receptors for Fullerenes Based on Klärner’s Tethers: Reaching the Affinity Limits. Org. Lett. 17 (21), (2015).
  40. George, S. R. D., Frith, T. D. H., Thomas, D. S., Harper, J. B. Putting corannulene in its place. Reactivity studies comparing corannulene with other aromatic hydrocarbons. Org. Biomol. Chem. 13 (34), 9035-9041 (2015).
  41. Shen, Y., Chen, C. -. F. Helicenes: Synthesis and Applications. Chem. Rev. 112 (3), 1463-1535 (2012).
  42. Crassous, J., Saleh, N., Shen, C. Helicene-based transition metal complexes: synthesis, properties and applications. Chem. Sci. 5 (10), 3680-3694 (2014).
  43. Nakamura, K., Furumi, S., Takeuchi, M., Shibuya, T., Tanaka, K. Enantioselective Synthesis and Enhanced Circularly Polarized Luminescence of S-Shaped Double Azahelicenes. J. Am. Chem. Soc. 136 (15), 5555-5558 (2014).
  44. Schweinfurth, D., Zalibera, M., Kathan, M., Shen, C., Mazzolini, M., Trapp, N., Crassous, J., Gescheidt, G., Diederich, F. Helicene Quinones: Redox-Triggered Chiroptical Switching and Chiral Recognition of the Semiquinone Radical Anion Lithium Salt by Electron Nuclear Double Resonance Spectroscopy. J. Am. Chem. Soc. 136 (37), 13045-13052 (2014).
  45. Šámal, M., Chercheja, S., Rybáček, J., Vacek Chocholoušová, J., Vacek, J., Bednárová, L., Šaman, D., Stará, I. G., Starý, I. An Ultimate Stereocontrol in Asymmetric Synthesis of Optically Pure Fully Aromatic Helicenes. J. Am. Chem. Soc. 137 (26), 8469-8474 (2015).
  46. Siegel, J. S., Butterfield, A. M., Gilomen, B. Kilogram scale production of corannulene. Organic Process Research & Development. 16 (4), 664-676 (2012).
  47. Mallory, F. B., Mallory, C. W. Photocyclization of stilbenes and related molecules. Organic Reactions. , (1984).
  48. Sato, M., et al. Convenient synthesis and reduction properties of [7] circulene. J. Chem. Soc., Perkin Trans. 2. (9), 1909-1914 (1998).
  49. Anderson, G. K., Lin, M. Bis(Benzonitrile)dichloro complexes of palladium and platinum. Inorg Synth. 28, 60-63 (1990).
  50. Nataro, C., Fosbenner, S. M. Synthesis and Characterization of Transition-Metal Complexes Containing 1,1′-Bis(diphenylphosphino)ferrocene. J. Chem. Ed. 86 (12), 1412-1415 (2009).
  51. Kauffman, G. B., Pinnell, R. P. Copper (I) Iodide. Inorg. Synth. 6, 3-6 (1960).
  52. Sonogashira, K. J. Development of Pd-Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. Organomet. Chem. 653 (1-2), 46-49 (2002).
  53. Chinchilla, R., Nájera, C. Recent advances in Sonogashira reactions. Chem. Soc. Rev. 40 (10), 5084-5121 (2011).
  54. Kolb, H. C., Finn, M. G., Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 40 (11), 2004-2021 (2001).
  55. Spiteri, C., Moses, J. E. Copper-Catalyzed Azide-Alkyne Cycloaddition: Regioselective Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles. Angew. Chem. Int. Ed. 49 (1), 31-33 (2010).

Play Video

Cite This Article
Álvarez, C. M., Barbero, H., Ferrero, S. Preparation of a Corannulene-functionalized Hexahelicene by Copper(I)-catalyzed Alkyne-azide Cycloaddition of Nonplanar Polyaromatic Units. J. Vis. Exp. (115), e53954, doi:10.3791/53954 (2016).

View Video