Summary

إعداد Nanosheets الكربون في درجة حرارة الغرفة

Published: March 08, 2016
doi:

Summary

We present the synthesis of an amphiphilic hexayne and its use in the preparation of carbon nanosheets at the air-water interface from a self-assembled monolayer of these reactive, carbon-rich molecular precursors.

Abstract

Amphiphilic molecules equipped with a reactive, carbon-rich “oligoyne” segment consisting of conjugated carbon-carbon triple bonds self-assemble into defined aggregates in aqueous media and at the air-water interface. In the aggregated state, the oligoynes can then be carbonized under mild conditions while preserving the morphology and the embedded chemical functionalization. This novel approach provides direct access to functionalized carbon nanomaterials. In this article, we present a synthetic approach that allows us to prepare hexayne carboxylate amphiphiles as carbon-rich siblings of typical fatty acid esters through a series of repeated bromination and Negishi-type cross-coupling reactions. The obtained compounds are designed to self-assemble into monolayers at the air-water interface, and we show how this can be achieved in a Langmuir trough. Thus, compression of the molecules at the air-water interface triggers the film formation and leads to a densely packed layer of the molecules. The complete carbonization of the films at the air-water interface is then accomplished by cross-linking of the hexayne layer at room temperature, using UV irradiation as a mild external stimulus. The changes in the layer during this process can be monitored with the help of infrared reflection-absorption spectroscopy and Brewster angle microscopy. Moreover, a transfer of the carbonized films onto solid substrates by the Langmuir-Blodgett technique has enabled us to prove that they were carbon nanosheets with lateral dimensions on the order of centimeters.

Introduction

النانو الكربون ثنائي الأبعاد تجتذب اهتماما كبيرا بسبب الخصائص الكهربائية، الحرارية، وكذلك الميكانيكية المعلقة ذكرت 1-5. ومن المتوقع أن تعزيز التقدم التقني في مجال مركبات البوليمر وأجهزة تخزين الطاقة والإلكترونيات الجزيئية 8-10 هذه المواد. وعلى الرغم من الجهود البحثية المكثفة في السنوات الأخيرة، ومع ذلك، والحصول على كميات أكبر من المواد النانوية الكربونية واضحة المعالم لا تزال محدودة، مما يعوق تنفيذ على نطاق واسع في التطبيقات التكنولوجية 11،12.

المواد النانوية الكربونية يمكن الوصول إليها من قبل أي من أعلى إلى أسفل أو نهج من أسفل إلى أعلى. مناهج نموذجية مثل تقنيات تقشير 13 أو العمليات ذات الطاقة العالية على الأسطح 14-16 توفر إمكانية الحصول على المواد ذات درجة عالية من الكمال الهيكلي وأداء جيد للغاية. ومع ذلك، فإن العزلة وتنقية عشرالمنتجات الإلكترونية لا تزال صعبة، والإنتاج على نطاق واسع من المواد ذات البنية النانومترية محددة من الصعب 12. من ناحية أخرى، ونهج من أسفل إلى أعلى ويمكن استخدام التي تعتمد على استخدام السلائف الجزيئية، ترتيبها في هياكل محددة، والكربنة لاحق أن تعطي النانو الكربونية 17-23. في هذه الحالة، والسلائف نفسها هي أكثر تعقيدا وإعدادها غالبا ما يتطلب خطوات الاصطناعية متعددة. قد توفر هذه النهج درجة عالية من السيطرة على الخصائص الكيميائية والفيزيائية للمواد الناتجة وأن يمد إمكانية الوصول المباشر إلى مواد مصممة. ومع ذلك، يتم تنفيذ تحويل السلائف إلى المواد النانوية الكربونية عادة في درجات حرارة أعلى من 800 درجة مئوية، الأمر الذي يؤدي إلى فقدان functionalization الكيميائية جزءا لا يتجزأ من 24-27.

تم معالجة القيود المذكورة أعلاه في مجموعتنا من خلال توظيف oligoynes شديدة التفاعل الذي كاليفورنيان تحويلها إلى مواد النانوية الكربونية في درجة حرارة الغرفة 28،29. على وجه الخصوص، مزدوج الألفة تضم مجموعة رأس ماء وجزء hexayne يمكن الوصول إليها من خلال سلسلة من البروم وNegishi ردود الفعل عبر اقتران بوساطة البلاديوم 30،31. تحويل هذه الجزيئات السلائف إلى هيكل الهدف يحدث عند أو أقل من درجة حرارة الغرفة عند التعرض للأشعة فوق البنفسجية. وتفاعل عالية من مزدوج الألفة oligoyne يجعل استخدام قوالب لينة، مثل واجهة بين الهواء والماء أو واجهات السائل، السائل، ممكنة. في التحقيقات السابقة، ونحن على استعداد بنجاح الحويصلات من حلول مزدوج الألفة hexayne الأنتراكينون 28. وقد تحقق عبر ربط هذه الحويصلات تحت ظروف معتدلة من الأشعة فوق البنفسجية من العينات. وعلاوة على ذلك، نحن على استعداد مؤخرا الطبقات الوحيدة الذاتي تجميعها من hexaynes مع رئيس مجموعة الكربوكسيل الميثيل وذيل ألكيل مسعور في واجهة بين الهواء والماء في حوض انجميور. حزمة كثيفةثم تم تحويلها إد السلائف الجزيئية بشكل مباشر إلى nanosheets الكربون الدعم الذاتي في درجة حرارة الغرفة بواسطة أشعة فوق البنفسجية. في النهج ذات الصلة في الآونة الأخيرة تم استخدام السلائف الجزيئية المحددة لإعداد ثنائي الأبعاد nanosheets بمد في واجهة بين الهواء والماء 32-38.

والهدف من هذا العمل هو إعطاء، نظرة عامة موجزة العملية من توليف وتلفيق الخطوات العامة التي تسمح لإعداد nanosheets الكربون من مزدوج الألفة hexayne. وينصب التركيز على المنهج التجريبي والأسئلة التحضيرية.

Protocol

تنبيه: يرجى التأكد من الاطلاع على بيانات سلامة المواد ذات الصلة (MSDS) قبل استخدام أي مركبات كيميائية. بعض المواد الكيميائية المستخدمة في هذه التوليفات هي شديدة السمية ومسرطنة. قد يكون النانوية مستعدة مخاطر إضافية مقارنة مع نظرائهم الأكبر. لا بد من استخدام كل ممارسات ا?…

Representative Results

13 C الرنين المغناطيسي النووي (NMR) الطيف للجزيء السلائف مستعدة 3 يعرض 12 ليرة سورية ذرات الكربون -hybridized الجزء hexayne مع التحولات الكيميائية المماثلة من δ = 82-60 جزء في المليون (الشكل 1B). وعلاوة على ذلك، يتم تعيين إشارات في δ = 173 جز?…

Discussion

وhexayne مزدوج الألفة المطلوبة (3) والتي البروم متتابعة 52،53 أعدت بشكل مباشر واستطالة 30،31 الجزء آلكاين بالشلل الرعاش المحفزة، يعقبها رد فعل deprotection النهائي للtritylphenyl استر (2) (الشكل 1A) 29. وأكد التوليف الناجح من قبل 13 C NMR الطيف (الشكل 1B)،</stro…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Funding from the European Research Council (ERC Grant 239831) and a Humboldt Fellowship (BS) is gratefully acknowledged.

Materials

Methyllithium lithium bromide complex (2.2M solution in diethylether) Acros 18129-1000 air-sensitive, flammable
Zinc chloride (0.7M solution in THF) Acros 38945-1000 air-sensitive, flammable
1,1'-Bis(diphenylphosphino)ferrocene]
dichloropalladium(II), DCM adduct 
Boron Molecular BM187
N-Bromosuccinimide Acros 10745 light-sensitive
Silver fluoride Fluorochem 002862-10g light-sensitive
n-Butyllithium (2.5M solution in hexanes) Acros 21335-1000 air-sensitive, flammable
Sodium methanolate Acros 17312-0050
Tetrahydrofuran (unstabilized, for HPLC) Fisher Chemicals T/0706/PB17 This solvent was dried as well as degassed using a solvent purification system (Innovative Technology, Inc, Amesbury, MA, USA)
Toluene (for HPLC) Fisher Chemicals T/2306/17 This solvent was dried as well as degassed using a solvent purification system (Innovative Technology, Inc, Amesbury, MA, USA)
Acetonitrile (for HPLC) Fisher Chemicals A/0627/17 This solvent was dried as well as degassed using a solvent purification system (Innovative Technology, Inc, Amesbury, MA, USA)
Dichloromethane (Extra Dry over Molecular Sieve) Acros 34846-0010
Chloroforme (p.a.) VWR International 1.02445.1000
Pentane Reactolab 99050 Purchased as reagent grade and distilled once prior to use
Heptane Reactolab 99733 Purchased as reagent grade and distilled once prior to use
Dichloromethane Reactolab 99375 Purchased as reagent grade and distilled once prior to use
Diethylether Reactolab 99362 Purchased as reagent grade and distilled once prior to use
Geduran silica gel (Si 60, 40-60µm) Merck 1115671000
Langmuir trough R&K, Potsdam
Thermostat  E1 Medingen
Hamilton syringe  Model 1810 RN SYR
Vertex 70 FT-IR spectrometer  Bruker
External air/water reflection unit (XA-511)  Bruker
UV lamp (250 W, Ga-doped metal halide bulb) UV-Light Technology
Brewster angle microscope (BAM1+)  NFT Göttingen
Sapphire substrates Stecher Ceramics
Quantifoil holey carbon TEM grids Electron Microscopy Sciences
Nuclear magnetic resonance spectrometer (Bruker Avance III 400) Bruker
JASCO V-670 UV/Vis spectrometer JASCO
Scanning Electron Microscope (Zeiss Merlin FE-SEM) Zeiss

References

  1. Geim, A. K., Novoselov, K. S. The rise of graphene. Nature Mater. 6 (3), 183-191 (2007).
  2. Lee, C., Wei, X., Kysar, J. W., Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 321 (5887), 385-388 (2008).
  3. Lee, J. H., Loya, P. E., Lou, J., Thomas, E. L. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science. 346 (6213), 1092-1096 (2014).
  4. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81 (1), 109-162 (2009).
  5. Lau, C. N., Bao, W., Velasco, J. Properties of suspended graphene membranes. Mater. Today. 15 (6), 238-245 (2012).
  6. Ramanathan, T., et al. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnol. 3 (6), 327-331 (2008).
  7. Fan, Z., Yan, J., Ning, G., Wei, T., Zhi, L., Wei, F. Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon. 60, 558-561 (2013).
  8. Fiori, G., et al. Electronics based on two-dimensional materials. Nature Nanotechnol. 9 (10), 768-779 (2014).
  9. Burghard, M., Klauk, H., Kern, K. Carbon-Based Field-Effect Transistors for Nanoelectronics. Adv. Mater. 21 (25-26), 2586-2600 (2009).
  10. Avouris, P., Chen, Z., Perebeinos, V. Carbon-based electronics. Nature Nanotechnol. 2 (10), 605-615 (2007).
  11. Zurutuza, A., Marinelli, C. Challenges and opportunities in graphene commercialization. Nature Nanotechnol. 9 (10), 730-734 (2014).
  12. Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., Kim, K. A roadmap for graphene. Nature. 490 (7419), 192-200 (2013).
  13. Novoselov, K. S., et al. Electric field effect in atomically thin carbon films. Science. 306 (5696), 666-669 (2004).
  14. Li, X., et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science. 324 (5932), 1312-1314 (2009).
  15. Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y., Tour, J. M. Growth of graphene from solid carbon sources. Nature. 468 (7323), 549-552 (2010).
  16. Lee, J. H., et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science. 344 (6181), 286-289 (2014).
  17. Scott, L. T., et al. A rational chemical synthesis of C60. Science. 295 (5559), 1500-1503 (2002).
  18. Hoheisel, T. N., Schrettl, S., Szilluweit, R., Frauenrath, H. Nanostructured Carbonaceous Materials from Molecular Precursors. Angew. Chem. Int. Ed. 49 (37), 6496-6515 (2010).
  19. Schrettl, S., Frauenrath, H. Elements for a Rational Polymer Approach towards Carbon Nanostructures. Angew. Chem. Int. Ed. 51 (27), 6569-6571 (2012).
  20. Müllen, K. Evolution of Graphene Molecules: Structural and Functional Complexity as Driving Forces behind Nanoscience. ACS Nano. 8 (7), 6531-6541 (2014).
  21. Chen, L., Hernandez, Y., Feng, X., Müllen, K. From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angew. Chem. Int. Ed. 51 (31), 7640-7654 (2012).
  22. Paraknowitsch, J. P., Thomas, A. Functional Carbon Materials From Ionic Liquid Precursors. Macromol. Chem. Phys. 213 (10-11), 1132-1145 (2012).
  23. Titirici, M. M., et al. Sustainable carbon materials. Chem. Soc. Rev. 44 (1), 250-290 (2015).
  24. Angelova, P., et al. A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes. ACS Nano. 7 (8), 6489-6497 (2013).
  25. Zhi, L., Wu, J., Li, J., Kolb, U., Müllen, K. Carbonization of Disclike Molecules in Porous Alumina Membranes : Toward Carbon Nanotubes with Controlled Graphene-Layer Orientation. Angew. Chem. Int. Ed. 44 (14), 2120-2123 (2005).
  26. Zhi, L., et al. From Well-Defined Carbon-Rich Precursors to Monodisperse Carbon Particles with Hierarchic Structures. Adv. Mater. 19 (14), 1849-1853 (2007).
  27. Matei, D. G., et al. Functional single-layer graphene sheets from aromatic monolayers. Adv. Mater. 25 (30), 4146-4151 (2013).
  28. Szilluweit, R., et al. Low-temperature preparation of tailored carbon nanostructures in water. Nano Lett. 12 (5), 2573-2578 (2012).
  29. Schrettl, S., et al. Functional carbon nanosheets prepared from hexayne amphiphile monolayers at room temperature. Nature Chem. 6 (6), 468-476 (2014).
  30. Hoheisel, T. N., Frauenrath, H. A Convenient Negishi Protocol for the Synthesis of Glycosylated Oligo(ethynylene)s. Org. Lett. 10 (20), 4525-4528 (2008).
  31. Schrettl, S., et al. Facile synthesis of oligoyne amphiphiles and their rotaxanes. Chem. Sci. 6 (1), 564-574 (2015).
  32. Sakamoto, J., van Heijst, J., Lukin, O., Schlüter, A. D. Two-Dimensional Polymers: Just a Dream of Synthetic Chemists?. Angew. Chem. Int. Ed. 48 (6), 1030-1069 (2009).
  33. Bauer, T., et al. Synthesis of Free-Standing, Monolayered Organometallic Sheets at the Air/Water Interface. Angew. Chem. Int. Ed. 50 (34), 7879-7884 (2011).
  34. Payamyar, P., et al. Synthesis of a Covalent Monolayer Sheet by Photochemical Anthracene Dimerization at the Air/Water Interface and its Mechanical Characterization by AFM Indentation. Adv. Mater. 26 (13), 2052-2058 (2014).
  35. Zheng, Z., et al. Synthesis of Two-Dimensional Analogues of Copolymers by Site-to-Site Transmetalation of Organometallic Monolayer Sheets. J. Am. Chem. Soc. 136 (16), 6103-6110 (2014).
  36. Sakamoto, R., et al. A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nature Commun. 6, 6713 (2015).
  37. van Heijst, J., Corda, M., Lukin, O. Compounds bearing multiple photoreactive chalcone units: Synthesis and study towards 2D polymerization in Langmuir monolayers. Polymer. 70, 1-7 (2015).
  38. Murray, D. J., et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 137 (10), 3450-3453 (2015).
  39. Li, J. J., Limberakis, C., Pflum, D. A. . Modern Organic Synthesis in the Laboratory. , (2007).
  40. Chai, C., Armarego, W. L. F. . Purification of Laboratory Chemicals. , (2003).
  41. Hoheisel, T. N., et al. A multistep single-crystal-to-single-crystal bromodiacetylene dimerization. Nature Chem. 5 (4), 327-334 (2013).
  42. Brzozowska, A. M., Duits, M. H. G., Mugele, F. Stability of stearic acid monolayers on Artificial Sea Water. Colloids Surf., A. 407, 38-48 (2012).
  43. Davies, J. T., Rideal, E. K. . Interfacial Phenomena. , (1963).
  44. Mendelsohn, R., Flach, C. R. Infrared Reflection-Absorption Spectrometry of Monolayer Films at the Air-Water Interface. Handbook of Vibrational Spectroscopy. , 1028-1041 (2002).
  45. Mendelsohn, R., Mao, G., Flach, C. R. Infrared reflection-absorption spectroscopy: Principles and applications to lipid-protein interaction in Langmuir films. Biochim. Biophys. Acta Biomembr. 1798 (4), 788-800 (2010).
  46. Hoenig, D., Moebius, D. Direct visualization of monolayers at the air-water interface by Brewster angle microscopy. J. Phys. Chem. 95 (12), 4590-4592 (1991).
  47. Hénon, S., Meunier, J. Microscope at the Brewster angle: Direct observation of first-order phase transitions in monolayers. Rev. Sci. Instrum. 62 (4), 936-939 (1991).
  48. Kirby, K. W., Shanmugasundaram, K., Bojan, V., Ruzyllo, J. Interactions of Sapphire Surfaces with Standard Cleaning Solutions. ECS Trans. 11 (2), 343-349 (2007).
  49. Blodgett, K. B. Films Built by Depositing Successive Monomolecular Layers on a Solid Surface. J. Am. Chem. Soc. 57 (6), 1007-1022 (1935).
  50. Langmuir, I., Schaefer, V. J. Activities of Urease and Pepsin Monolayers. J. Am. Chem. Soc. 60 (6), 1351-1360 (1938).
  51. Mendelsohn, R., Brauner, J. W., Gericke, A. External infrared reflection absorption spectrometry of monolayer films at the air-water interface. Annu. Rev. Phys. Chem. 46 (1), 305-334 (1995).
  52. Hofmeister, H., Annen, K., Laurent, H., Wiechert, R. A Novel Entry to 17a-Bromo- and 17a-Iodoethynyl Steroids. Angew. Chem. Int. Ed. Engl. 23 (9), 727-729 (1984).
  53. Kim, S., Kim, S., Lee, T., Ko, H., Kim, D. A New, Iterative Strategy for the Synthesis of Unsymmetrical Polyynes: Application to the Total Synthesis of 15,16-Dihydrominquartynoic Acid. Org. Lett. 6 (20), 3601-3604 (2004).
  54. Chalifoux, W. A., Tykwinski, R. R. Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nature Chem. 2 (11), 967-971 (2010).
  55. Kaganer, V. M., Möhwald, H., Dutta, P. Structure and phase transitions in Langmuir monolayers. Rev. Mod. Phys. 71 (3), 779-819 (1999).
  56. Eda, G., et al. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22 (4), 505-509 (2010).
  57. Kumar, P. V., Bardhan, N. M., Tongay, S., Wu, J., Belcher, A. M., Grossman, J. C. Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nature Chem. 6 (2), 151-158 (2014).
  58. Chernick, E. T., Tykwinski, R. R. Carbon-rich nanostructures: the conversion of acetylenes into materials. J. Phys. Org. Chem. 26 (9), 742-749 (2013).
  59. Rondeau-Gagné, S., Morin, J. F. Preparation of carbon nanomaterials from molecular precursors. Chem. Soc. Rev. 43 (1), 85-98 (2014).

Play Video

Cite This Article
Schrettl, S., Schulte, B., Stefaniu, C., Oliveira, J., Brezesinski, G., Frauenrath, H. Preparation of Carbon Nanosheets at Room Temperature. J. Vis. Exp. (109), e53505, doi:10.3791/53505 (2016).

View Video